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In this editorial I would like to share with the readership of 
JFE some of my ideas and thoughts, a few months before I 
start my five-year tenure as the Technical Editor. For some 
time this Journal has been an established and respected vehicle 
for communicating the results of fluid-mechanics research 
within the engineering community. It is supported by a very 
active division of ASME, the Division of Fluids Engineering, 
which has been striving to identify important emerging areas 
of research. 

It might appear at first that all I would have to do to fulfill 
my responsibilities is to stay the course. But, I believe that the 
advances in modern technology may soon require some sig
nificant changes in our publishing practices. I suppose it is 
easy to introduce any topic today by reminding your audience 
of the spectacular progress technology has made recently. But, 
in the task of communicating technical information, the need 
to update our methods is real and urgent. After all, this is the 
age of communication explosion. And yet today scientific in
formation is communicated by journals in much the same way 
as it was 100 or 200 years ago!! 

I have been personally faced with the dilemma and the frus
tration of how to manage a few million pieces of experimental 
data. A few graphs that fit in the space of a journal article 
may convey the message but are totally inadequate for com
parison with results of other methods of investigation. I always 
offer to supply to anyone interested all my numerical and 
experimental data on tape or disk, and I have had quite a few 
requests. But I am still not sure what and how an author should 
provide to the readers. 

I believe that it is the responsibility of a scientific journal 
to organize, standardize, and document the exchange of sci
entific information. We may soon request that each article be 
accompanied by a file of data in a standardized form that will 
be available to the readers of the Journal. This type of infor
mation could be provided by the author at the time the paper 
is submitted and be available to the editors and reviewers. If 
the paper is accepted, the corresponding data file could be an 
integral part of the scientific contribution, available through 
the office of the Journal. In this way, all investigators who 
will later employ this information for comparison will use the 
same set of data. We are presently studying the details of a 
standardized method for electronic communication of the 
Journal audience with a Journal Bank. For the time being, 
authors are requested to offer voluntarily their data on disk. 

During my tenure as a Technical Editor, I also plan to work 
on a few other topics. Most intriguing to me is the idea of 
trying to "return the Journal to the audience." Here is what 
I mean by that. Talking to many colleagues over the past 20 
years, I came to understand that we all view a journal as a 
vehicle to publish our work. In case you are now wondering 
"well, what else is a journal for," you are proving my point, 
because, of course, communication of scientific information 
means that a journal is also meant to be read. Somehow, we 

all have come to understand that a journal serves the authors. 
I strongly believe that a journal should serve the readers. It is 
only a side effect that the author gets the benefit of becoming 
known or perhaps getting promoted because he had something 
nice to publish. 

Here is how I propose to better serve this very important 
constituency of the Journal, the reader. We will do our best 
to ensure that every article has something important and useful 
to offer. And the terms "important" and "useful" are em
ployed here in their broadest sense. In simpler terms, a paper 
fails to serve its purpose, if the reader can say after he has 
read it, "so what!" You may be thinking that this is nothing 
new. After all, criteria for acceptance for all scientific journals 
have always been such attributes as "originality," "signifi
cance" and "lasting contribution." And yet, I find that many 
papers published today simply discuss just another, perhaps 
smarter way of doing something. What the reader should be 
looking for and what I define as "useful" is the discussion of 
a new physical phenomenon, or a new interpretation of the 
physics of a known phenomenon, or the description of a new 
technique that the reader can use. The Editorial Board will 
make every effort to ensure that all submitted papers pass this 
criterion before they are accepted. 

Another point that we should address is making the papers 
published in JFE more readable. Working as an associate editor 
for a few years, I found that there are areas which developed 
independently of others for a while. Investigators working in 
such areas tend to become isolated and thereby deprive them
selves of the advantages of cross-fertilization. What concerns 
me is that their communications become more and more con
voluted and their style and jargon incomprehensible to re
searchers in other areas. This can happen in every discipline, 
at every level. To improve the way papers are presented, I 
recommend that each paper be sent to one reviewer who is not 
a specialist in the area of the paper. 

Our expectations from such a reviewer are, of course, dif
ferent than those from one who has worked extensively in the 
area. At the same time, I urge the authors to think of a broader 
audience. You certainly need to reach the ones who work in 
the same area with you, but your paper will be more successful 
if people outside the area also actually read it. 

I also plan to continue the traditions that Frank White and 
Bob Dean established for the Journal. I will try to have at 
least one review article of current interest in each issue. I will 
also welcome and on occasion invite authors to submit edi
torials. 

When Dr. White took over as Technical Editor about 12 
years ago, he made the observation that the Journal was be
coming the territory of academicians. Fortunately, this trend 
did not continue. We all feel that one of our important con
stituencies is the industrial world. The mission of the Journal 
has always been to publish basic and original work in fluid 
mechanics. And yet, many of the problems discussed in these 
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pages are inspired by real engineering problems. Morever, quite 
often, our papers offer information that can find immediate 
application in practice or can be useful to the designer. 

During Dr. White's tenure, the Journal led the way in es
tablishing standards for experimental uncertainty and numer
ical accuracy. We will continue requiring that all papers 
uniformly abide by these rules. 

We are working on a few more ideas which have not yet 
crystalized. This transition also coincides with some bold and 

promising plans of restructuring the activities of the ASME 
Division of Fluid Mechanics which are being introduced by its 
executive committee. I anticipate that more suggestions will 
result from these activities. The readers are also invited to 
share with the Editorial Board their opinion on the future of 
this Journal. 

Demetri P. Telionis 
Technical Editor-Elect 

CALL FOR NOMINATIONS FOR 

THE NUSSELT-REYNOLDS PRIZE 

Sponsored by 

Assembly of World Conferences on 
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 

A new award has been established by the Assembly of World Conferences to commemorate outstanding contributions 
by Wilhelm Nusselt and Osborne Reynolds as experimentalists, researchers, educators and authors. The Nusselt-Reynolds 
Prize shall be bestowed at every World Conference (about three year intervals) to qualified scientists and engineers. A 
maximum of one prize may be made in each of the following three areas: heat transfer, fluid mechanics and thermodynamics. 

The prize shall be bestowed for outstanding scientific and engineering contributions in the field of heat transfer, fluid 
mechanics and thermodynamics through (1) experimental studies and analytical/numerical extension of the measurements, 
and/or (2) development of experimental techniques, visualization techniques and/or instrumentation. These contributions 
should yield a deeper insight into physical phenomena involved or represent significant technological advances. In addition 
to research, the awardee(s) should have made outstanding contributions to the field through teaching, design or a combination 
of such activities. The prize is based on achievement through publications or through the application of the science or art. 
Nationality, age, sex, or society membership shall not be considered when evaluating qualifications of candidates. A candidate 
must be living at the time of designation as a recipient of the prize. 

The prize consists of a bronze plaque, an engrossed certificate and an honorarium. The prize is administered by a Prize 
Board. The deadline for accepting nominations for the Prize is September 1, 1990. The first Prize will be awarded at the 
Second World Conference in June 1991. Nominators can request the nomination form and further information from: 

Professor A. E. Bergles, Chairman 
The Nusselt-Reynolds Prize Board 
Dean of Engineering 
Rensselaer Polytechnic Institute 
Troy, NY 12180-3590 

Tel: (518) 276-6298 
Fax: (518) 276-8788 
Telex: 6716050RPITROU 
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Errors Due to Turbidity in Particle 
Sizing Using Laser-Doppler 
Anemometry 
Flow turbidity, when introduced between the transmitting and receiving optics and 
the measuring volume of a laser-Doppler anemometer, changes the pedestal am
plitude and visibility of the signal. The purpose of this work is to assess the effect 
on the accuracy of particle sizing, based on measurements of these two quantities, 
for depths of field of 5 and 10 cm, interrupting particle diameters between 14 to 
212 urn in three discrete ranges and void fractions up to 0.1 percent. The turbidity 
introduces random fluctuations in visibility which increase with void fraction and 
the resulting rms errors in particle diameter for turbidity introduced on the receiving 
side of the optics are smaller than 10 percent at void fractions below 0.1 percent. 
For particles larger than about one third of the beam diameter, the influence of 
turbidity is largely due to the interruption of the incident beams over the 5 cm 
nearest to the measuring volume. 

Introduction 
The dispersion of solid and liquid particles in turbulent flow 

is important in a number of industrial applications, including 
coal-fired furnaces. Dispersion is a function of, among other 
things, the relative velocity between the particulate and air 
phases and of particle size. Velocity can be measured by the 
established technique of laser-Doppler anemometry and a 
number of publications have suggested methods to exploit 
characteristics of the Doppler signal to measure the corre
sponding particle size in the range from 1 to, say, 500 ^m. 
These include inferring particle size from the magnitude of the 
"pedestal" amplitude (for example, by Levy and Lockwood, 
1981; Mizutani, Kodama, and Miyasaku, 1982; Yule, Ereaut, 
and Ungut, 1983; Modarress and Tan, 1983; Allano, Gouesbet, 
Grehan, and Lisiecki, 1984; and Hess, 1985) or from the value 
of the signal "visibility" (for example, by Durst, 1973; Hong 
and Jones, 1976; Farmer, 1978; Bachalo, 1980; Negus and 
Drain, 1982; and Hadded, Bates and Yeoman, 1985). Com
binations of both approaches have been suggested by Negus 
and Drain (1982) either to "calibrate" the relation between 
pedestal amplitude and particle diameter for diameters above 
which visibility is not single-valued or to provide a basis for 
rejecting signals with erroneous visibility. 

In a companion paper (1987), we have shown that errors 
arise when a two-phase flowfield interrupts the laser beams 
between the transmitting optics and the measuring volume. 
The errors have random and systematic components, and the 
magnitude of these depends on the size and concentration of 
the particulate phase and on the "depth of field." 

Purpose of Current Contribution. The purpose of this pa
per is to quantify the relative magnitudes of the errors in 
measuring particle size due to turbidity in the path of the 
transmission and receiving optics, respectively. Particle size 
was inferred from measurements of either the signal visibility 
or the amplitude of the pedestal component of the output of 
the photomultiplier. The fluctuations in the signal were gen
erated by: 

(1) introducing a two-phase flowfield between the meas
uring volume and the receiving optics, as a function of 
particle concentration, at one depth of field, with in
terrupting particle size as parameter; and 

(2) introducing a two-phase flowfield simultaneously be
tween the measuring volume and both the transmitting 
and the receiving optics. 

A further purpose is to quantify the influence of the distance 
between the interrupting particles and the measuring volume 
in the transmission path. The results are also likely to be rel
evant to some single beam instruments (for example, those of 
Holve and Self, 1979; Wang and Tichenor, 1981; and Holve 
and Annen, 1984), as well as instruments based on laser-Dop
pler anemometers. 

The following section describes the experimental technique 
and the results, and the discussion examines the implications 
of the results in the context of the attainable accuracy of 
particle sizing. The paper ends with a summary of the more 
important conclusions. 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS and presented at the AIAA/ASME 4th Fluid Me
chanics Conference, Atlanta, Oa., May 11-14, 1986. Manuscript received by 
the Fluids Engineering Division Aug. 30, 1986. 

Experimental Method 
The apparatus is illustrated in Fig. 1 and the principal char

acteristics of the anemometer are given in Table 1. A repetitive 
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Doppler signal was produced by rotating either an optical fiber 
(30 /<m nominal diameter), which represented the smallest re
producible scattering center that could be attached to the ro
tating mount, or a 400 jim nominal diameter Plexiglass (acrylic) 
bead through the center of the measuring volume at constant 
angular velocity. Note that the use of a single scatterer implied 
that no more than one particle was present in the measuring 
volume at any one time, which is a necessary precondition for 
relating either measured quantity to particle size. Also, no 
special procedure, such as the use of a "pointer-volume," was 
necessary in this experiment to account for the nonuniform 
irradiance profile of the incident laser beams. In general, par
ticles which traverse a nondiametral trajectory of the Gaussian 
light distribution produce signals with variations in amplitude 
or visibility which are unrelated to differences of size. In these 
experiments, however, the particle was constrained to traverse 
a repetitive trajectory which always passed through the center 
of the measuring volume of the laser-Doppler anemometer. 
The interrupting two-phase flowfields were established within 
transparent, plane-sided tanks of water which contained a 
known mass of particles of one of three size ranges (see Table 
2); detailed size distributions for the largest and smallest ranges 
are given in our previous paper. Water tanks were chosen to 
provide a suspension of particles for experimental convenience. 
The range of particle diameters chosen is practically relevant 
to the use of the amplitude and visibility techniques for sizing 
and the lower limit of 14 nm was set by commercial availability. 
The particles were set in motion by the use of a paddle stirrer. 
Two tanks were used to provide depths of field corresponding 
to 5 and 10 cm. The figure shows the definitions of symbols 
Df and D2, which are depths of field, and of Lx and L2, which 
are the distances from the measuring volume to the tanks. 

The instruments for processing the output of the photo-
multiplier are shown in Fig. 2 and are identical to those used 
previously. The frequency counter incorporated amplitude and 
time-domain validation logic. The pedestal amplitude and vis
ibility were calculated from the output of a 20 MHz, 8 bit 
transient recorder. 

/ i t o u g n / 

Fig. 1 Optical arrangement of laser-Doppler anemometer showing in
terruption on transmitting optics side by a dispersed two-phase flow. 
Doppler signal generated by rotation of a mounted scattering particle. 

Results 
In the absence of any interrupting particles in the water 

tanks, the pedestal amplitude and signal visibility were con
stant. The addition of particles to the tanks resulted in random 
variations in these two quantities and the probability distri
bution can be characterized by the changes in the mean and 
standard deviation. The following two subsections examine 
the influence of particle interruption between the measuring 
volume and the receiving optics only, and between the meas
uring volume and both transmitting and receiving optics si
multaneously. 

Particles Between the Measuring Volume and Receiving Op
tics. Figure 3 shows the attenuation of the pedestal amplitude 
due to introducing a water tank with D2 = 10 cm between the 
measuring volume and the receiving optics. Measurements were 
made as a function of the void fraction, for three interrupting 
particle size ranges, and for Doppler signals generated by a 
Plexiglass sphere (400 nm diameter) and an optical fiber (30 
fim diameter). The latter comparison shows that the variation 
of mean attenuation which results with increasing void fraction 
is the same (to within the experimental error) but that the 
spread of the random fluctuations is larger for the fiber by up 
to about one third. The results pertain to Doppler signals 
generated by the fiber and, although it is not certain whether 
the difference is due to the different shape or to the different 
diameter, the conclusions to be drawn are not affected by this 
difference. Comparison with previous results for the same 
conditions of interrupting particle size, concentration and depth 
of field, but placed between the transmission optics and the 
measuring volume, shows that the mean attenuation is the same 

Table 1 Principal characteristics of the laser-
mometer 
5 mW He-Ne laser wavelength 
Focal length of lenses: 

imaging lens 
light-collecting lens 

Beam diameter, at e~2 intensity, of laser 
Beam half-angle 
Fringe separation (line pair spacing) 
Major and minor axes to e"2 intensity 
Number of fringes 
Magnification ratios of receiving optics for: 

"small" tank CD2=5 cm) 
"medium" tank (£>2=10cm) 
"large" tank (D2= 14 cm) 

Collecting aperture for: 
400 fira bead (nominal) 
30 jim fiber (nominal) 

Pinhole diameter 

Doppler 

632.8 

300 
150 

0,65 
5.74° 
3.164 

3.72, 0.37 
118 

0.54 
0.56 
0.57 

61 x 2 
60 x 10 

0.48 

ane-

mm 

mm 
mm 
mm 

j i m 

mm 

mm 
mm 
mm 

Table 2 Principal characteristics of scattering particles 
Size range 

(jim) Particle material Density 
(kg/ms) Refractive index Sizing method 

14-40 Lead glass 2950 
40-75 Plexiglass ("Diakon")* 1190 

175-212 Plexiglass ("Diakon")' 1190 

1.6 
1.49 
1.49 

DIN silk test sieves 
BS sieves 
BS sieves 

•Registered trademark, ICI. 

N o m e n c l a t u r e 

D = depth of field of water tank (see Fig. 1) 
L = distance between measuring volume and water tank 

(see Fig. 1) 

Subscripts 

1 = pertaining to distances in transmission path 
2 = pertaining to distances in receiving path 
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Fig. 2 Signal processing arrangement for velocity (counter) and max
imum pedestal amplitude and visibility (transient recorder) 

o acrylic sphere; L^ 4-9cm 
• optical fiber ; Ifitban 

( H x W 1 0 

(Kg/m3) 

( # / m 3 ) 

0O1 0 0 2 

particle concentration 
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0 0 2 

0 1-
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20 
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002 00S 

Fig. 3 Attenuation of pedestal amplitude by turbidity in receiving optics 
path for (a) 14-40 urn, (6) 40 -75 (im, and (c) 175-212 pm particles. Depth 
of field, D2 = 10 cm. See Fig. 1 for definition of L2. Symbols are mean 
values: vertical bars show spread between the maximum and minimum 
values. 

but that the spread of the random component of the atten
uation is smaller here. This difference is because the sheet (from 

£ 6 0 ' ~ 
>-
r340'-
03 

5220 -

o acrylic sphere: l-p V9on 
•optical f iber; Lj=t>'6cm 

(a) 
IKg/m3) —i 

o< 

~ 1 ' 4 , 1 0 , 0 ( * / I B 3 ) 

particle concentration 

—i void fraction t%) 
002 

A 
(b) 

t o 

60 -

Fig. 4 Modification of visibility by turbidity in receiving optics path for 
(a) 14-40 pm, (6) 40 -75 /im and (c) 175-212 ^m particles. Depth of field, 
0 2 = 10 cm. See Fig. 1 for definition of L2. Symbols are mean values: 
vertical bars show spread between the maximum and minimum values. 

the fiber) or cone (from the sphere) of scattered light is inter
rupted by a larger number of particles than would interrupt 
the incident laser beams. The instantaneous number of particles 
is described by Poisson statistics and, since the mean number 
of interrupting particles is larger, the ratio of the standard 
deviation to the mean number is smaller. 

Figure 4 allows comparison between the measurements of 
visibility for the sphere and the fiber, and the differences in 
visibility at zero void fraction are due to differences in the 
alignment of the aperture in the receiving optics. It is the change 
in the visibility relative to that recorded at zero void fraction 
that is of interest here. The results are similar for fiber and 
sphere and comparison with results for interruption of the 
incident laser beams shows that the magnitude of the random 
fluctuations here is smaller. The reader should note carefully 
that the random components of attenuation and visibility due 
to interruption in the transmission optics path increase as the 
diameter of the interrupting particles approaches the diameter 
of the incident laser beams: whereas these random components 
due to turbidity in the receiving optics path are not affected 
by this consideration. The incident beam diameter is approx
imately 400 /im (see Table 1) and a smaller diameter will result 
in larger random errors for the transmission path but will have 
no influence on the errors for the receiving path. 
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Fig. 5 Attenuation of pedestal amplitude by turbidity in transmission 
and receiving paths separately and simultaneously, (a) 14-40 ^m, and 
(b) 175-212 urn particles. Lengths L and D(in cm) are defined in Fig. 1. 
Symbols are mean values: vertical bars show spread between the max
imum and minimum values. 

Particles Simultaneously Present Between the Measuring 
Volume and the Transmitting and Receiving Optics. The si
multaneous presence of turbidity on either side of the meas
uring volume has the expected effect (shown in Fig. 5) of 
lowering the mean value of the pedestal amplitude below that 
produced by interruption on either side separately. The results 
were obtained for depths of field of 5 and 10 cm on the trans
mitting and receiving sides, respectively, and for two particle 
size ranges. For comparison, the separate effects of interrup
tion on either side are also included and this shows that the 
resultant mean attenuation for both tanks simultaneously pres
ent is equal to the product of the mean attenuation produced 
by each tank separately. The magnitude of the random com
ponent of attenuation is considered in the discussion below. 

Figure 6 shows the corresponding effect on the signal visi
bility of simultaneous interruption of the light paths on both 
sides of the measuring volume. There is no large change in the 
mean visibility but the spread of the random variation of vis
ibility is larger than is found with interruption on each side 
separately. The results may, however, be affected by the dif
ference in the distance of the tank on the receiving optics side 
(i.e., L2) from the measuring volume. This distance was 3.5 
cm for simultaneous interruption and 4.9 cm for interruption 
on the receiving optics side only. The importance of this dis
tance is described in the following subsection. 

Separation Between Tank and Measuring Volume. Figures 
7 and 8 show the effect on the pedestal amplitude and visibility 
of the separation between the tank (Z>, = 5 cm depth of field) 
containing the interrupting particles and the measuring volume 

too 
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« x # 

0 0 02 0-04 0 06 

Fig. 6 Modification of visibility by turbidity in transmission and re
ceiving paths separately and simultaneously, (a) 14-40 /<m, and (b) 175-
212 um particles. Lengths L and D (in cm) are defined in Fig. 1. Symbols 
are mean values: vertical bars show spread between the maximum and 
minimum values. 

on the transmitting optics side. Measurements were made for 
three separations (L{ = 16.5, 10, and 3.5 cm) and two inter
rupting particle size ranges. Figure 7 shows that there is no 
dependence of the distribution of pedestal amplitudes on the 
separation. This is in contrast with the results for visibility 
(Fig. 8) which show that, for the larger particle size range (175-
212 f<m), the spread of the random component of visibility 
becomes wider the closer that the tank approaches the meas
uring volume. For the smaller size range (14-40 fim), there is 
no effect of the location of the tank. 

Discussion 
The implications of the results of the previous section are 

now considered for the application of laser-Doppler ane-
mometry to the measurement of the size range of the particulate 
phase. 

The spread of the visibility at any void fraction can be related 
to an error in the measurement of particle size by assuming a 
linear relationship between visibility (V) and particle diameter 
(d), which is a convenient approximation for 0.2 < V < 0.8. 
The standard deviation (expressed as a percentage of the mean) 
in particle size due to turbidity in the path of the receiving 
optics is shown in Fig. 9 as a function of the void fraction (the 
conditions of Fig. 4 for the sphere). As would be expected, 
the error increases with increasing particle size and void frac
tion and the rms error is smaller than ± 10 percent for inter
rupting particle diameters up to 212 (im and over the 

Journal of Fluids Engineering JUNE 1990, Vol. 112/145 

Downloaded 02 Jun 2010 to 171.66.16.101. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o 

e 

6 

h 
16-5 

10-5 

3-5 

O 

© 

A 

Li 
165 

105 

3-5 

it m 

5 m 

o-60 

ti<« 
Via 3=;o 
§r? 
ftS-" zr< 

0 

rrf 

. . . , . » 

0 0-01 
particle concentration 

(Kg/m3) 

0" 

vox) t ract ion!%) 

too 

80 

i* 
I, 

0 

04xt?° 

(Kg/m3) 

l # /m ' ) 

0 0-51 002 
particle concentration 

vod fraction (%) 

Fig. 7 Attenuation of pedestal amplitude by turbidity in transmission 
path for (a) 14-40 j»m, and (6) 175-212 |im particles for three values of 
L, (in cm). Depth of field, 0, = 5 cm. 

Fig. 8 Modification of visibility by turbidity in transmission path for (a) 
14-40 ^m, and (6) 175-212 jim particles for three values of L, (in cm). 
Depth of field, O, = 5 cm. 

comparatively large depth of field of D2 = 10 cm. For the 
conditions studied, there is no systematic influence of turbidity 
on the mean visibility. Figure 10 shows the same type of in
formation for interruption of both the transmitting and re
ceiving paths by particles in the 175-212 fim size range (the 
conditions of Fig. 6 for the fiber). 

The figure shows that the error with interruption on both 
sides of the measuring volume is virtually indistinguishable 
from that which occurs due to turbidity in the transmitting 
path alone, where Z>, = 5 cm. The error due to turbidity in 
the receiving optics, where D2 = 10 cm, is about half that 
caused by the turbidity in the transmitting path, even though 
the depth of field is twice as large. The error generated by a 
given turbidity between the transmitting optics and the meas
uring volume overshadows that due to the same turbidity be
tween the volume and the receiving optics. 

The results of Fig. 8 show that, for the larger size range, 
the random error in visibility (Fig. 11) generated by turbidity 
between the transmitting optics and the measuring volume 
becomes larger as the interrupting particles approach the meas
uring volume (i.e., as length Ls decreases). The results suggest 
that "large" in this context refers to particles which are above 
one third of the diameter of the incident laser beams. This 
supports our observation (1987) that the spread of visibility 
becomes almost independent of depths of field greater than 
about 5 cm. The rapid increase in the spread of visibility as 
the interrupting particles approach the measuring volume sug
gests that the results underestimate the error because it was 

TURBIDITY DUE TO: 
° 14-40 um R4RTICLES 
a 40-S um • 
a 175-212um • 

void fraction (%) 

Fig. 9 Standard deviation in visibility due to turbidity In receiving path 
for three ranges of particle size. Depth of field, D2 = 10 cm. Signal 
generated from Plexiglass (acrylic) sphere (400 »im nominal diameter). 

not possible to make L, = 0, although the magnitude of the 
underestimation cannot be quantified from the available re
sults. It is likely that a similar effect on the signal visibility 
occurs due to the distance of the tank on the receiving optics 
side (L2) from the measuring volume. This has not been in
vestigated but is certain to be a weaker influence than is L\. 

The relationship between particle diameter and visibility can 
be made single-valued for diameters up to about 60 ixm but, 
above this size, the diameter must be inferred from an alter
native measurement, such as the pedestal amplitude. Figures 
3, 5, and 7 show that there is a systematic error due to the 
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Fig. 11 Standard deviation in visibility due to turbidity in transmission 
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mean attenuation of this amplitude because of the turbidity 
on either side of the measuring volume. The magnitude of this 
error is found as e = 1 - Vr , where T is the normalized 
pedestal amplitude, by assuming that the pedestal amplitude 
is proportional to the cross-sectional area of the particle (it is 
useful to note that the magnitude of the mean attenuation, 
and hence the mean error, can be estimated in any given flow 
by using the Lambert-Bouguer-Beer law for the purpose of 
assessing whether the error is unacceptably large). Negus and 
Drain (1982) have suggested that visibility and pedestal am
plitude be used simultaneously to size particles smaller than 
60 nm and this allows the determination of the constant of 
proportionality between amplitude and particle diameter for 
every point in the flow. With knowledge of this constant, it 
is argued that particles with diameter above 60 nm can be sized 
from the pedestal amplitude. In the absence of an independent 
local measurement of particle diameter, techniques which use 
the absolute intensity of the scattered light in either a laser-
Doppler configuration or a single beam instrument must op
erate at particle concentrations which are sufficiently low that 
the resulting error is acceptable. 

Although it is likely that the above procedure will account 
for the mean attenuation, it cannot remove the rms error due 
to the random variation about the mean. The standard devia
tion (again, expressed as a percentage of the mean) in particle 
size, inferred from the pedestal amplitude and due to turbidity 
in the path of the receiving optics, is shown in Fig. 12 for the 
conditions of Fig. 3. For interrupting particles with diameter 
smaller than 212 /*m, the rms error is less than 5 percent over 
a 10 cm depth of field. The rms measurement error results in 
uncertainties in the calculated mean diameters of, for example, 
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Fig. 12 Standard deviation in diameter inferred from pedestal ampli
tude due to turbidity in receiving path. Depth of field, D2 = 10 cm. 
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Fig. 13 Standard deviation inferred from pedestal amplitude due to 
turbidity in transmitting and receiving paths separately and simultane
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Fig. 1. 

the size distribution of a spray. As an illustrative example, the 
consequences of a 10 percent rms error in measured visibility 
have been estimated for the size distribution of a kerosene 
spray measured by Hardalupas et al., 1990. The Sauter and 
volume mean diameters, which were measured by phase-Dop-
pler anemometry and hence are unaffected the depth of field, 
were 57.9 and 44.7 ixm, respectively, whereas the rms uncer
tainty would result in systematic shifts of about + 1 Vi and + 
!/2 percent, respectively. The consequences of the rms meas
urement error will be more important when estimating the 
velocity of the carrier phase from that of the smallest particles 
in the flow, since the correlation between size and velocity will 
be broadened. 

Measurements of particle size which are inferred from the 
pedestal amplitude are influenced by turbidity in both the 
transmitting and receiving paths. It has already been remarked 
that the overall mean attenuation is the product of the atten
uations due to transmitting and receiving paths separately, 
which is expected. Figure 13 shows the same type of infor
mation but for interruption of both the transmitting and re
ceiving paths by particles in the 175-212 /xm range (the 
conditions of Fig. 5(b)). The rms error due to interruption in 
the path of the receiving optics is comparable to that due to 
interruption of the transmitting optics (contrast this with the 
result for visibility, Fig. 10), although the depth of field, D2 

(= 10 cm), is twice that in the transmitting path [Dt = 5 cm). 
The rms error with interruption on both sides of the measuring 
volume is larger by between one and two percentage points 
than that due to interruption in the transmitting optics alone. 
Thus, although the larger contribution to the total rms error 
is likely to be due to the error caused by turbidity in the 
transmitting optics, the error generated in the path of the 
receiving optics may not be negligible and the magnitude of 
the latter should be assessed in each case. The overall variance 
due to turbidity on either side of the measuring volume is 
given, to accuracy sufficient for an error analysis, by the sum 
of the variances due to the turbidity on either side separately. 
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The information reported in this paper has two practical 
applications. It can guide the design of experiments by sug
gesting which combinations of particle and laser beam di
ameters, depth of field and void fraction should be avoided 
because of the ensuing low measurement accuracy. Second, it 
permits the estimation of the magnitude of systematic and rms 
errors, particularly when disadvantageous combinations of ex
perimental conditions cannot be avoided. 

Conclusions 

1. Turbidity between the measuring volume and the receiv
ing optics generates a spread of visibilities, corresponding 
to a tolerance on measured diameters, which increases 
with the void fraction of the interrupting particles. The 
tolerance caused by a given turbidity is larger for inter
ruption between the measuring volume and the trans
mitting, rather than receiving, optics and, in practice, is 
likely to be the dominant source of uncertainty. 

2. For particles larger than about one third of the incident 
beam diameter, the tolerance increases with decreasing 
distance between the interrupting particles and the meas
uring volume in the transmission path and the tolerance 
is generated mostly over the 5 cm nearest to the measuring 
volume. As a consequence, it is likely that the results 
underestimate the errors due to turbidity in the trans
mission path because L, was finite in the experiments. 

3. The effect of turbidity on the pedestal amplitude can be 
separated into a mean attenuation and a spread about 
this mean, which correspond to mean and random errors 
in measured diameters. The mean attenuation caused by 
a given turbidity is the same for interruption on either 
side of the measuring volume and, for simultaneous in
terruption on either side, is the product of the attenuation 
on each side. The tolerance due to the mean component 
can be allowed for by simultaneous measurements of 
visibility, but the random error cannot be removed in 
this way and will increase with void fraction and diameter 
of the interrupting particles. The contribution of the tur
bidity in the path of the receiving optics to the total rms 
error is likely to be smaller that that due to interruption 
in the path of the transmitting optics. 

4. In contrast to the results for visibility, the mean and 
random errors do not depend on the distance (L,) between 
the interrupting particles and the measuring volume in 
the transmission path. 
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Flow in a Rotating Straight Pipe, 
With a View on Coriolis Mass 
Flow Meters 
The fully developed flow through a straight pipe, which rotates about an axis 
perpendicular to its own, is considered. The perturbation of the Hagen-Poiseuille 
flow, produced by the pipe rotation, is computed to second order and its features 
are described. The force of the fluid on the rotating pipe is correlated with other 
parameters of the flow, among them the mass flow rate Q. Possible relevance of 
the flow field and of the fluid forces in the rotating pipe for Coriolis flow meters 
are discussed. 

1 Introduction 

It is the aim of the present paper to look anew at the fluid 
flow through a rotating straight pipe (Barua, 1954; Benton, 
1956; Jones and Walters, 1967). This kind of flow is interesting 
by itself, because it allows the investigation of nonlinear effects 
in the Navier-Stokes equation in a simple geometrical setting. 
It is, however, also of practical engineering relevance, because 
of the qualitative insight it offers into phenomena occurring 
in industrial devices, for instance in some flow rate measuring 
instruments. The simplest geometrical versions of these in
struments pass the fluid through a straight pipe segment which 
is in planar vibration. The form of the vibration is influenced 
by the inertia of the fluid, mainly through the Coriolis effect; 
its analysis therefore furnishes a way to measure the mass flow 
rate of the fluid. For high precision measurements of one-
phase mass flow and, especially, for the use of such instruments 
in particulate two-phase flow it is not enough to analyze only 
the vibration of the pipe and to take into account the fluid 
only by a mean velocity (Chen, 1987). A more detailed insight 
into the flow regime inside the oscillating pipe is certainly 
needed, as well as an understanding of its feedback on the 
behavior of the elastic pipe. 

In this paper the secondary flow produced by rotation in a 
straight pipe is analyzed along the lines of Barua (1954), i.e., 
for laminar flow in which the effect of rotation is considered 
as a perturbation. His analytic results are extended here to the 
complete second order of perturbation. Higher orders can be 
obtained within a reasonable effort only by the use of computer 
algebra (Raszillier et al., 1988, 1990). 

The features of the flow through the infinite rotating pipe 
provide elements for a qualitative understanding of the flow 
through the vibrating pipe segments of Coriolis mass flow 
meters. They also show to what degree global considerations 
are enough for the description of the reaction forces of the 
flowing fluid on the vibrating pipe segments and how these 
considerations can be refined. 

The next section (2) of the paper presents the quantitative 
formulation of the problem to be discussed, defines the as
sociated characteristic (Reynolds and Taylor) numbers, and 
formulates the strategy for the solution of the Navier-Stokes 
equations by a perturbation series. In Section 3 the two lowest 
orders of perturbation of the basic (Hagen-Poiseuille) flow, 
due to the rotation of the pipe, are presented and their qual
itative properties are described. The reaction forces of the fluid 
against the imposed rotation of the pipe turn out (Section 4) 
to be independent of local details of the flow field, as long as 
the flow is fully developed. In particular, the force in the 
normal direction to the plane spanned by the pipe and rotation 
axes is precisely the Coriolis force, i.e., 2Qfl when referred to 
the unit length of the pipe; here Q denotes the angular velocity 
of the pipe and Q the mass flow rate. In the last section (5) 
the properties of the flow field and the fluid forces in the 
rotating straight pipe are used as a frame for an analysis of 
the phenomena which are expected to take place inside the 
vibrating pipe segment of the Coriolis flow meters. This anal
ysis is qualitative, but it already shows the type of phenomena 
which have to be included in a detailed quantitative discussion 
of these flow meters. On the other hand, it shows how the 
fluid is expected to influence the particle trajectories in par
ticulate two-phase flows. This could improve the understand
ing of the behavior of Coriolis flow meters in two-phase flow, 

2 Equations Describing the Flow 
A fixed (inertia!) reference frame, with axes defined by the 

unit vectors e,, e2, e2 (Fig. I) and a rotating coordinate frame 
rigidly attached to the pipe and characterized by the unit vectors 
fi, f2, f3 of the three axes will be considered. The common 
origin of both frames lies on the pipe axis and the vector f3 

points along it. The e,( = f|)-axis is taken, following Barua 
(1954), as the axis of rotation of the pipe; the constant angular 
velocity is accordingly 

fi = Qf, 
Contributed by the Fluids Engineering Division for publication in the JOURNAL 

OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
February 26, 1988. 

(2.1) 

The geometry of the pipe suggests the use of cylinder coor
dinates (r, 6, z) in the frame attached to it (Fig. 2). 
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Fig. 1 Inertial and rotating frames of reference 

There is only one geometrical length in this flow problem, 
the pipe radius a; together with the angular velocity fi and the 
kinematic viscosity v of the fluid it allows to form the dimen
sionless (Taylor) number 

2fla2 

R=—, (2.2) 
v 

which characterizes the effect of rotation on the flow. In the 
fully developed flow the drop of the viscous pressure 

1 
pX(r) = P(J) - -p(0 x r)2, r = rfr + zfi, (2.3) 

(P = pressure, p = fluid density) in the direction of the pipe axis 
is a constant, say 

dz a3 (2.4) 

The dimensionless number c introduced here can be taken as 
an additional independent parameter characterizing the flow.1 

In the Hagen-Poiseuille flow (i? = 0) c is precisely, with the 
normalization chosen here, the mean Reynolds number defined 

2 0 
by in terms of the mass flow rate Q and the dynamic 

•wixa 
2 0 1 

viscosity n = pv. For the rotating pipe the ratio deviates 
•Kfia c 

from 1 and defines the resistance law of the flow. 
The transverse part of the velocity field 

\=ufr+vfe+wf3 (2.5) 

in the rotating frame will be described, following Barua (1954), 
by a stream function ¥(r, 8): 

a * 
fU= - — > 

30 
V=-

a * 
dr' 

(2.6) 

For the stream function * and the axial velocity W one gets 
in a straightforward way two coupled partial differential equa
tions. In terms of the dimensionless quantities \p, w, x, defined 
by 

r = ax, 
*(r,e) = ^(jc,fl), 

W(r,8) = -w(xfi) 
a 

(2.7) 

they are 

x v V = -Rlxcosd-—sin0— ) + ( — — — - —J vfy . 
\ dx 36 J \dx dd 3d dxj 

_ (2.8) 

'Barua's number with the same notation is in the present convention - 4 c . 

Fig. 2 Definition of cylinder coordinates 

xV w =R(. #cos0-d± 
'dx -SH at JL_at AN 

dx dd ~ dd dx, 
w - 4cx. 

(2.9) 

One may look for a solution of these equations in the form 
of series expansions in the Taylor number R, 

,»(*,0)= £*>,(*, *). 

UX, 0)=YlR"tn(X, 6). 

(2.10) 

(2.11) 

This solution represents a perturbation of the Hagen-Poiseuille 
flow w0(x, 0) = c(l -x2), <pa(x, 6) = 0, produced by the rotation 
of the pipe. 

The nonlinear equations for w, t/- lead to an infinite system 
of equations for the various orders of perturbation w„, \j/„ 
( « = 1 , 2 , . . .): 

* v V i , = 

~dwn-\ ...„ f l
9 lv/.-i\ , "x^fWk 1 d\Pk d\ 2 , xcosfl-

a* 
L - sin0-^>U dx dd dd dxj 

V ^ „ . 

(2.12) 

xV w„ = 2cx-dtn 
dd 

+ ^cos^__sin,__j + £ (__ --— - J *„_», 
(2.13) 

which allows their stepwise computation starting from vv0 and 
\p0. Thereby first the transverse flow of order n(\j/„) is com
puted from the axial flow of order n— 1 (.wn_t) and from the 
mutal interferences of lower-order transverse flows. Then the 
axial flow of order n (vv„) is computed from the transverse 
flows of orders n - 1 and n{$n_x and \l/n) and from interferences 
of the lower-order axial and transverse flows. 
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*2 
Fig. 3 Streamlines of the first order transverse flow, i, 

3 Approximate Solution and Interpretation 
The system of equations (2.8), (2.9) can be interpreted qual

itatively as follows. The linear terms on the right-hand side of 
equations (2.8), (2.9) have their origin in the Coriolis force. 
This force generates, according to equation (2.12), from the 
axial flow vv„_, a transverse flow \j/n. The transverse flow ^„_j 
produces a Coriolis force which acts along the pipe axis and 
modifies, according to equation (2.13), the axial flow by w„. 
Besides this feedback mechanism between axial and transverse 
flows to increasing orders of perturbation, which is reflected 
by the linear parts of equations (2.12), (2.13), there is an 
interference between different orders of perturbation, de
scribed by the nonlinear terms. 

The lowest order contributions to the stream function, \pt, 
and to the perturbation of the axial velocity, wh have been 
computed by Barua (1954): 

3*2 
-x^cosfl, (3.1) 

32-2s 
wi<*. 0) = -rTex(l-x2)(x4-3x2 + 3)sind. (3.2) 

From (2.13) it is seen that >v, has no contribution from the 
Coriolis term; it is entirely produced by interference between 
w0 and \j/t. 

The computation of the next order is already rather tedious: 
Barua (1954) has computed by hand fa, 

Mx,e) = yj7^.x2(l-x1)2(ll-2xi-x4)sin2d, (3.3) 

and part of w2. The complete evaluation of w2 gives 

w2(x, 6)=gl(x)+g2(x)cos26 

3 

2 'MV5 

(3.4) 

SiM=~(x2-\f+ ° .tf-lfi- 10^ + 32^- 37), 
2'-32 

c3 

g2(x)=zs-r2x
2{x2-\){3x1-5) 

2* »3 

2I7.34.52.7' 
x2{x1- l)(48x8-302x6 + 958x4- 1457x2 + 923). 

It is very time-consuming to do it by hand. Fortunately it turns 
out that equations (2.12), (2.13) can be brought to a form 
which is particularly suited for analytical calculation by com
puter (Raszillier et al., 1988). The calculation can then be 
extended to rather high orders of perturbation (Raszillier et 
al., 1990); the check of (3.1)-(3.4) by computer algebra is 
straightforward. 

*r/^X\>.l/%A 

Fig. 4 First-order correction to the axial flow, w„ in arbitrary units 

/ / 
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x2 
Fig. 5 Streamlines of the second-order transverse flow, <p2 

The transverse flow has to lowest order two critical points, 
of vanishing velocity, at 

x = -L = 0.447. 
V 5 

0 = 0, IT, 
(3.5) 

which are the centers of two vortices (Fig. 3). The Coriolis 
force generated by these vortices is active only in w2. The first-
order perturbation, wu has its origin, as already mentioned, 
in the interference between iv0 and ^ ; its effect is an increase 
of the axial velocity in the angular range 0 < 6 < IT and a decrease 
in - 7r < 6< 0 (Fig. 4). Thereby the velocity profile is perturbed, 
but the flow rate is not changed. This perturbation produces, 
therefore, as secondary axial flow driven by fluid inertia, an 
infinitely long vortex superposed over the Hagen-Poiseuille 
flow. Since Rwx is linear in R, but quadratic in c, this flow 
will reverse with the sense of rotation, but not with that of the 
main flow. 

The second-order perturbation of the transverse flow, \j/2, 
consists of four vortices (Fig. 5) which can be traced back, 
qualitatively, to the effect of the Coriolis force on the first-
order perturbation, w,, of the axial flow: there are two vortices 
in each half of the pipe cross section, where w, >0 and iv, <0 
respectively, which are like the two vortices of \pu produced 
via the Coriolis term in (2.12) by w0. 

The axial flow of second order, w2, leads through the term 
g, to a change (decrease) in the flow rate and through the term 
g2 cos 26 to two infinitely long vortices (Fig. 6). These vortices 
can be interpreted for very low (Reynolds) numbers c (Fig. 
6(a)), where the first term in g2 dominates, in the same way 
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Fig. 6(a) For very small (Reynolds) numbers (c) 
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Fig. 7 Illustration to the computation of the fluid force 

Fig. 6(6) For (Reynolds) numbers c around 80. 

Fig. 6 Contribution g2 cos 20 to the second-order correction of the axial 
flow, w2, in arbitrary units 

as the vortex of H>,: the transverse flow \p2 toward the pipe 
wall increases the axial velocity, that away from the wall de
creases it: this determines the sense of the flow vv2. With in
creasing values of c (Fig. 6(b)) the second term in g2 starts to 
dominate and the sense of the vortices changes. 

4 Forces of the Fluid on the Pipe 
When the velocity field of the flow is known, it is straight

forward to compute the pressure distribution. Then one pos
sesses all elements of the stress tensor aIJt which allows the 
computation of the forces and moments, by which the fluid 
acts on an element Lly of the inner pipe surface. 

The force F = (F,, F^ F3) is given by 

'i=-\zw°iJni F.= - dS, (4.1) 

where the normal vector unit n = (n,, n2, n-j) of E w points from 
the fluid to the pipe. On the pipe surface the stress tensor is, 
up to a sign, equal to the tensor of momentum flux fly (Landau 
and Lifshits, 1959), 

(4.2) -IV 
Therefore one has the relation 

dll,-,-
tfV- L,Ityi,«/S, (4.3) 

where the two surface elements Lw, £, form together the whole 
boundary dV = LW+E, of the fluid volume V. In (4.3) the 

•jTT 

volume integral of -~i can be replaced with the help of the 
aXj 

Navier-Stokes equation for an incompressible fluid by integrals 
of the densities 

- p ^ ' + 2p(VxQ), + 2 > ( V(f ix r ) 
'), 

(4.4) 

of the inertial forces in the rotating frame. The resulting for
mula 

Fi=-Jt\v
pK dV^2p(Qx \vYdV)i 

{"I ,(V(nxr)2),<fV- L n<y ni dS (4.5) 

follows exactly from the definition of the force and from the 
integral form of the momentum equation equation for the 
incompressible fluid (Pao, 1967). This formula is useful if the 
information available about the flow allows either to compute 
the force explicitly or to correlate it with global physical quan
tities which are directly accessible to measurement. 

When the velocity field is fully developed, i.e., independent 
of the axial coordinate z, the interpretation of (4.5) becomes 
particularly transparent, if one considers as V the fluid volume 
between two cross sections z = z+ and z = z_ (z+ >Z-) of the 
pipe (Fig. 7). One gets for the force exerted by this fluid element 
on the pipe 

Ft = 0, 

F2 = 2QUAz, 

(4.6) 

(4.7) 

dQ 
(4.8) F}=--Kcp-p(x + - x - ) - A z -J- , 

dt 
where px± is the average of the pressure px over the cross 
sections E + , 

X ± ~ ™ 2 .k \rdr dd. (4.9) 

The transverse force of the fluid on the pipe is the Coriolis 
force, expressed through the mass flow rate 

i - ' l WdS, (4.10) 

the longitudinal force F3 (shear stress) is related to that part 
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Fig. 8 Oscillating pipe segment, with the central section S„ In trans
lation and the two oppositely rotating sections S., 

of the pressure drop, which is due to the fluid viscosity. When 
the magnitude of the angular velocity (fi(0) is not constant in 

j j - • , • • , 7. - dQ(t) . , 

time, an additional inertial term, ira^Azzp r with 
dl 

z = ~(z+ +Z-), appears in F2-

Simple global correlations like those expressed by (4.7), (4.8), 
are no longer available, if the flow is geometrically or dynam
ically more complicated. One has then to come back to the 
solution of the local equations describing the fluid flow and 
to the computation of the tensor <j,y, which gives the complete 
local information on the stresses produced by the fluid. 

5 Relation to Coriolis Flow Meters 

Mass flow rate measuring devices based on the Coriolis effect 
have in their simplest geometrical realization as fluid dynamical 
component a straight pipe, which performs planar oscillations 
(Fig. 8). The two segments (S±) of this pipe, which are of 
particular interest here, are during the pipe oscillation essen
tially in a rotational motion; the motion of the segment (Sc) 
between them is essentially a translation. Therefore the con
siderations of the preceding Sections may be applied quali
tatively to the segments S ± . 

First, a few words on the limits of these considerations 
should be said. The considerations of local character, presented 
in Sections 2 and 3, are valid in a certain region of the (c, R)-
plane, which can be reasonably estimated from the convergence 
properties of the flow rate Q as a function of c and R. For 

this one has to know a rather large number of terms of the 
expansions (2.10), (2.11) (Raszillier et al., 1990). In the limit 
/? — 0, c— oo, with a finite value of lim Rc = K, this estimate 
has been given numerically by Mansour (1985), with the result 
that K should be smaller than a critical value Kc = 413.3. . .. 
For qualitative purposes this result can be extrapolated beyond 
the infinitesimal region for which it was originally obtained. 
One arrives in this way at the estimate 

c2R2<Kl (5.1) 

for the region of validity of (2.10), (2.11). Outside this region 
one has to investigate the flow by other approaches. Yet nu
merical computations (Duck, 1983) suggest, that even for 
c- 1500 and R = 10 well outside (5.1) there are no significant 
departures of the transverse stream lines and the axial velocity 
from the picture given by the perturbation expansions. A com
plete picture of this flow, over the whole (c, /?)-plane, is at 
present still missing. Therefore it seems natural to appeal to 
available pieces of local information from the series (2.10), 
(2.11) and to model independent global information, as that 
described in Section 4, in order to develop a qualitative picture 
of the rather more complicated flow in a Coriolis flow meter. 

If one associates the two segments S± of the oscillating pipe 
with two oppositely rotating pipes, one expects the appearance 
of secondary flow in each of these segments. The relative 
orientation of these expected flows depends on the behavior 
of the axial velocity iv and the stream function \p under reversal 
of rotation (fi fi). The flows in S+ and S^ match only if 
iv and \p are insensitive to the sign of R: w(r, 6; -R) = w(r, 
d; -R), ^(r, d\ -R) = ̂ (r, 6; -R). The pipe flow obeys the 
symmetry relations 

w(r, d; -R)=w(r, -6; R), (5.2) 

Mr, 6; -R)=-Mr, ~8; R), (5.3) 

(Raszillier et al., 1988, 1990), which express the fact that the 
right and left parts of the velocity field in the rotating pipe 
exchange with the change of the rotation (R R). For the 
matching condition of the flows in S+ and S_ this symmetry 
implies that the axial velocity is left-right symmetric, w(r, 6; 
R)=w(r, -d, R), and the stream function is antisymmetric, 
i>{r, 0; R)= -^(r, -6; R). Since the terms of the series ex
pansions (2.10), (2.11) have the symmetry properties 

-0) = (-D"w„(r, 6), (5.4) w„(r, 

Mr, - 0 ) = - ( - l ) " i M / - . 0 ) . (5.5) 

(Raszillier et al., 1988, 1990), which can be easily verified by 
the functions (3. l)-(3.4), one notices that there are obstructions 
to the matching, coming from the terms of odd order in the 
expansion of w and \p. So one may expect in the sections S+ 

and S_ of the oscillating pipe the same flow pattern, with a 
smooth matching over Sc, only when even orders dominate in 
these expansions. The odd orders tend to develop oppositely 
oriented flows in the two sections S ± . The actual flow pattern 
in the oscillating pipe is, therefore, expected to develop an 
asymmetry with respect to the geometric symmetry plane (P) 
of the pipe. 

An asymmetry in the oscillation of the pipe is already pro
duced by the main flow of the fluid in the pipe; it can be 
interpreted in terms of the Coriolis force (4.7) and, conse
quently, in terms of the mass flow rate Q. Namely, since the 
Coriolis force changes sign with fi, it acts oppositely in the 
sections S± of the oscillating pipe and produces in the oscil
lation an asymmetry with respect to the plane (P). This is the 
basic principle on which the Coriolis type of mass flow meter 

dtt 
is based. An angular acceleration — produces, as discussed 5 dl 
in Section 4, a force which acts in a symmetric way with respect 
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Simulation of Vortex-Shedding 
Flow About a Circular Cylinder at 
High Reynolds Numbers 
Vortex shedding over a circular cylinder is modeled based on the weakly compressi
ble/low equations with a simple subgrid scale turbulence model and a simple hybrid 
boundary condition. An explicit finite volume method is used. A subcritical and a 
supercritical case are computed. It is shown that the large-scale vortex-shedding 
phenomenon, the primary vortices, and the related oscillatory lift and drag can be 
calculated fairly well with a grid system coarser than the boundary layer thickness. 
The secondary vortices and the related higher frequency oscillations are also 
calculated by using somewhat finer grids. 

Introduction 
Understanding of the vortex-shedding flow behind a sta

tionary circular cylinder is of great fundamental and practical 
importance. Numerous studies have been made for low 
Reynolds number cases (Re < 1000) by solving the Navier-
Stokes equations for two-dimensional flow directly. A recent 
computational work of Braza et al. [1] showed the existence of 
secondary eddies previously observed experimentally by 
Bouard and Coutanceau [2], and elucidated the process of 
merging of two secondary eddies to form a primary eddy that 
is subsequently shed. Eaton's [3] analysis of streamlines and 
streaklines relating to the initiation of a shedding process con
firmed the interpretation of Prandtl's movie by Perry et al. 
[4]. 

Direct calculation of vortex shedding flow is not practical at 
large Reynolds numbers because a very dense computational 
grid is needed to resolve the details of small-scale turbulence 
and thin boundary layers. The most common approach to 
solving large Reynolds number flows is to divide the flow field 
into the potential flow region and the boundary-layer region. 
The discrete vortex method for two-dimensional flows [5-7] 
and the vortex-lattice method [8-10] for three-dimensional 
flows are relatively recent developments which take into ac
count the first order effect of vorticity shedding on the outer 
flow. It appears that the vortex method can fairly adequately 
simulate the vortex-shedding phenomenon because the viscous 
effect is relatively unimportant to large-scale eddies. However, 
the potential flow-boundary-layer approach cannot directly 
deal with the subjects of vortex diffusion and energy dissipa
tion in the wake region. 

The primitive equations of inviscid flow, such as Euler 
equations, support vorticity convection. If there is a proper 
numerical mechanism to produce vorticity on the cylinder sur
face, it should give a solution similar to that of the discrete 
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vortex method. The advantage of using the equations of 
primitive variables is that they are easily extended to the 
viscous and turbulent flows and to the three-dimensional 
cases. The results obtained by the recent studies on inviscid 
separation are quite encouraging. Many researchers [11-14] 
showed that inviscid separation was caused by a singular 
boundary, such as a sharp corner, a smooth boundary with 
large curvature, or a shock. Although the full-slip condition 
is enforced at the rigid boundary when Euler equations are 
solved, the singular boundary could effectively create a vor
ticity source as the thin boundary layer does in the real flow. 
Quite often the analogy between the modeled result and the 
real flow is striking [11]. 

In the present study of vortex shedding flow, the full 
Navier-Stokes equations of large eddy motion are solved 
numerically. The primary boundary layers on the body are not 
actually resolved but are approximated by applying various 
degrees of partial-slip boundary conditions, ranging from full-
slip to no-slip, depending on the relative magnitude of the 
boundary-layer thickness and the grid size chosen. The idea of 
using partial-slip boundary condition is similar to that of the 
wall function approach widely used in turbulent flow model
ing. A more detailed description will be given later. 

Governing Equations and Vorticity Dynamics 

The weakly compressible flow is described in reference [15]. 
A brief explanation is given herein. For a barotropic process in 
which density is a function of pressure, the equation of con
tinuity may be written as 

dp 

dt 
+ u- Vp + pa2 V-u = 0 (1) 

where p, a, p, and u are fluid density, sound speed, pressure, 
and velocity vector, respectively. A weakly compressible flow 
refers to the flow with Mach number so small that p and a in 
equation (1) may be regarded as constants without causing 
significant error. By dimensional analysis, it can be shown 
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that the second term in equation (1) is of order M2 and can be 
neglected. The first term, however, should be retained if the 
flow is unsteady or the Strouhal number is very large. 

The equation of motion of incompressible flow, 

—-— + U ' V u + Vp = i'V2u (2) 
at p 

can be shown to be of the same order of accuracy as equation 
(1) if the Mach number is small. Thus, the weakly compressi
ble flow may be defined as the flow with very small M such 
that equations (1) and (2) with p and a equal to constants may 
apply. It should also be noted that the weakly compressible 
flow is equivalent to multidimensional hydraulic transient 
flow. 

For turbulent flow computations, the cell averaged large ed
dy simulation method [16, 17] has been adopted. In this case 
by taking the average of equation (2) over a finite volume, the 
equation of motion is written as 

du 1 , ,„ ^ 
+ u « V u + Vp = i 'V 2 u -u , ' u (2a) 

dt p 

A simple subgrid scale turbulence model proposed by 
Smagorinsky [18] and used by many others [19] with fairly 
good results is adopted. This model is based on the turbulent 
viscosity concept, 

- u- it] =vT dUj/d.Xj (3) 

where vT is the SGS diffusivity, being modeled by 

vT=(CA)2(2SiJSu)
in (4) 

In equation (4), Sy•= Vi(dui/dxJ• + Buj/dxi) is the resolvable 
strain rate, A is the grid size, and C is the SGS coefficient to be 
determined by trial. In the present study of two-dimensional 
flows, C=0.5 appears to give reasonable results. 

For a special case of two-dimensional incompressible flows, 
by taking the curl of equation (2), we obtain the well-known 
vorticity transport equation, 

do) 
— — + u « Vo> = i>V2o> (5) 

at 

in which to is the vorticity. According to this equation, at least 
when the Mach number is very small, vorticity is conserved 
while it is transported by convection and diffusion. In other 
words vorticity production and destruction can take place only 
at the boundary but not in the flow field. Vorticity can be 
transported into or out of the flow field through the upstream 
end or the downstream end, mainly due to convection. It is 
usually produced at the solid boundary due to the adhesive 
force between fluid and solid (but not due to viscosity) which 
is mathematically represented by the no-slip or partial-slip 
boundary condition. The vorticity generated at the wall is 
transported away from the wall by viscous diffusion. It is im
portant to note that viscosity, either real or numerical, has 
nothing to do with vorticity production or destruction, at least 
in the two-dimensional incompressible flow case. 

Let us now consider the viscous flow about a flat plate 
placed parallel with an otherwise uniform flow of velocity U. 
At the leading edge, the velocity is suddenly brought to zero 
and a very large vorticity is produced there. The diffusion and 
convection mechanism start to transport the vorticity pro
duced at the leading edge. At an arbitrary distance x 
downstream of the leading edge, the total vorticity flux across 
the boundary layer is, within the accuracy of boundary-layer 
approximation, 

dV f6 du 1 „ 
—-— = 1 u dn = U1 = constant (6) 

dt Jo dn 2 

where T is the circulation and dY/dt is the vorticity flux. Since 
vorticity flux is constant for all x, except at the leading edge, 
no vorticity is being generated or destroyed anywhere in the 

boundary layer, except at the leading edge. Moreover, the vor
ticity flux is determined only by the velocity in the outer 
region. For the flow about a circular cylinder to be analyzed, 
equation (6) still holds except that U is a variable representing 
the speed at the edge of the boundary layer. The concept 
described above is extremely important to the understanding 
of the work to follow. 

It was pointed out by Song and Yuan (1988) that the weakly 
compressible flow approach becomes essentially equivalent to 
Chorin's (1967) artificial compressibility approach if the con-
vective term in equation (1) is neglected and an artificial value 
is assigned to the speed of sound (a) to facilitate the speed of 
convergence. To enhance the convergence speed, this work 
uses a multicompressibility approach; start the computation 
with an artificially small sound speed (large M) and, as the 
solution approaches convergence, the speed of sound is raised 
to the real value in steps. 

Numerical Approach 

The well-known explicit finite volume method based on 
MacCormack's predictor-corrector scheme [20, 21] was used 
to integrate the governing equations of continuity and motion. 
Since the scheme is widely known, no detailed description will 
be given here. In short, for small Mach number flows, the con-
vective term in equation (1) is neglected and the resulting equa
tion together with equation (2a) is rewritten in conservative 
form. These equations are integrated over a finite volume and, 
by invoking the divergence theory, converted into a form of 
storage equations. The resulting equations are solved 
numerically for every finite volume with a second order ac
curate predictor-correcter alogrithm. 

This algorithm requires a phantom point outside of the 
boundary for every boundary cell. All dependent variables 
(p,u) on the phantom points must be assigned according to 
certain rules determined by the boundary conditions. 

The two-dimensional flows around a circular cylinder 
placed between two fictitious parallel walls are computed. The 
purpose of the side walls is to limit the computational domain. 
They are assumed to be rigid but, in order to avoid the con
tamination of the flow field by the vorticity generated by these 
walls, the full-slip boundary condition is applied. This is 
equivalent to assuming that the fluid does not wet the 
boundary and should not be confused with the inviscid flow 
assumption. 

On the upstream end located 2.5 diameter from the center 
of the cylinder, constant inflow velocity is assumed. The 
downstream end is taken as far away from the cylinder as 
necessary to allow full development of the vortex street. It is 
very important to select a good nonreflecting boundary condi
tion at the downstream end to ensure good results. Pressure 
waves generated by the unsteady flow field that travel at the 
speed of sound and the large scale vortices that travel at near 
the convective speed should be allowed to pass the 
downstream end as freely as possible. It was found much bet
ter to allow the pressure at each grid point to vary with time 
and fix the average pressure rather than to simply fix the 
pressure. This condition is especially important to pass the 
vortices from the downstream boundary. The subject of 
nonreflecting boundary condition is still under investigation 
and will not be discussed in detail here. 

The boundary condition on the cylinder surface which is 
responsible for vortex generation and flow separation is the 
most important part of the computational scheme. It is 
described in detail in the next section. 

Boundary Conditions on Cylinder Surface 

For a large Reynolds number flow of interest, a large por
tion of the boundary layer is too thin to be fully resolvable 
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Fig. 1 Partial slip boundary condition 

with our available computer resources. Two approximate ap
proaches are commonly in use under this circumstance. The 
first approach is the well-known boundary layer-inviscid flow 
approach. The second approach is a simpler but rougher ap
proach known as the wall function approach which largely ig
nores the detailed velocity distribution in the boundary layer, 
but considers the effect of boundary shear on the slope of the 
velocity profile of the outer flow near the boundary. For ex
ample, the log-law profile is often assumed to exist in the wall 
region of the turbulent flow, and the wall boundary condition 
is modified accordingly. For a developing boundary layer over 
a circular cylinder, however, it is rather difficult to develop a 
proper wall function. 

Based on a concept similar to that of the wall function ap
proach, a simpler partial-slip boundary condition approach is 
proposed. To fix the idea, consider a hypothetical velocity 
profile with large gradient near the wall as shown in Fig. 1. 
The boundary-layer thickness <5 and the grid size A are shown 
to be of the same order of magnitude. The solid curve 
represents the actual velocity profile. Point 1 is the center of a 
boundary cell and point p is the corresponding phantom 
point. The no-slip boundary condition is equivalent to setting 
Up= —Ux. Under this condition, a typical numerical solution 
will give a velocity profile represented by the broken line 
which tends to underestimate the velocity inside as well as out
side of the boundary layer. On the other hand, if we assume 
that the velocity profile in the boundary layer is an extension 
of the velocity between the first two cell centers, points 1 and 
2, then the velocity at the phantom point is Upp. This condi
tion is equivalent to assuming a partial-slip velocity U0 or 
assuming a certain wall function. A typical computed velocity 
profile represented by a dotted line in this case tends to 
overestimate the velocity in the boundary layer but agrees with 
the outer flow very well. The full-slip boundary condition is 
given by Up = Ux and a partial-slip condition satisfies 

-U{<Upp<U, (7) 

It is interesting to note that the partial-slip boundary condition 
approaches the no-slip condition as A/5—0 but approaches 
the full-slip condition as <5/A — 0. 

The cylinder surface is divided into three regions according 
to the relative magnitude of the boundary layer thickness 8 
and the grid size A, as shown in Fig. 2. In the front portion of 
the cylinder where <5«A, S-zone in Fig. 2, the effect of 
boundary layer is ignored and the fully slip boundary condi
tion is imposed. In the rear part of the cylinder, which is 
always immersed under the large eddies and <5»A, N-zone in 
Fig. 2, the no-slip boundary condition is used. In the in
termediate region, where <5 is of the same order of magnitude 
as A, P-zone in Fig. 2, a partial slip condition is applied. The 

Journal of Fluids Engineering 

FLOW 

CYLINDER 
Fig. 2 Sketch of S-, P-, and N-zone, where slip, partial-slip, and no-slip 
conditions are applied, respectively 

hybrid type of boundary conditions is applied in such a way 
that the P-zone smoothly connects with both the S- and N-
zones. 

The selection of the three zones and the points SP and NP 
must depend on the relative magnitude 5/A. For the present 
calculations, because of large Reynolds number and coarse 
grids, the boundary layer thickness before the boundary layer 
separation point SB is likely to be smaller than the grid size. 
For this reason, point SP is set to coincide with the laminar 
boundary layer separation point SB if the flow is subcritical. 
The laminar separation point is calculated at every time step 
using the formula of Curie and Skan [22]. Experience shows 
that the point SB moves appreciably due to vortex shedding. 
When the flow is supercritical, the turbulent boundary layer 
separation point is estimated using the Stratford formula [23]. 
Because the turbulent boundary layer separation was found to 
move very little during vortex shedding, the point SP was set 
at the average position of SB. 

The point SM shown in Fig. 2, called the model separation 
point, is the point where the reverse flow is first detected at the 
boundary cells. In other words, it is the point where the veloci
ty at the center of the boundary cells (V{ in Fig. 1) becomes 
zero. Clearly, A <SC <5 and the no-slip condition is fully justified 
here. The model separation point SM moves by large amounts 
during the vortex shedding events and changes from one time 
step to another. We assumed, rather arbitrarily, that the point 
NP to be located at a constant distance A6 upstream of SM in 
such a way that P-zone shrinks to zero when SM is at its ex
treme upstream point. 

The full-slip, partial-slip, and no-slip zones are determined 
at every time step according to the method described above. 
The slip velocity varies smoothly from K, to zero all the time 
within the p-zone. According to the argument given previous
ly, vorticity should be generated within the entire P-zone 
rather than at the leading edge as in the case of the flat plate. 
The total production rate, and hence the shedding rate, should 
be approximately equal to 0.5 U2 where U is the maximum 
speed outside of NP. This fact is verified with the numerical 
results. 

The computational scheme also requires the pressure at the 
phantom point to be specified. This additional boundary con
dition must be carefully selected so as not to conflict too much 
with the basic mechanics of the flow. The condition of zero 
pressure gradient normal to the wall is frequently used [20, 
21]. This assumption is satisfactory when the grid size A is 
much smaller than the radius of curvature /• of the bounding 
streamline. It will produce a significant error and even a 
premature flow separation if A is not much smaller than r 
because the centrifugal force is neglected. By considering the 
equation of motion in the direction normal to the streamline 
and retaining only the inertial and the pressure terms, a better 
boundary condition is obtained: 
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Fig. 4 Variation of drag and lift coefficients with time (Re = 1.4 x 10s) 

dp 
dn 

= p(U$2/r (8) 

where r is the radius of the cylinder. The right-hand side of 
equation (8) represents the pressure gradient due to the cen
trifugal force, which is equal to zero when U'B=0 or r— °°. 

Results 
For most of the computational results described herein the 

mesh system for a circular cylinder in a straight channel is 
shown in Fig. 3. The blockage ratio is D/B = 0.125, where B is 
the width of the channel. The smallest cells being centered at 
the cylinder surface have dimension A„«A7 = .05 D».04 D. 
Some computations were also carried out with a finer grid 
system obtained by subdividing each original cell into four 
smaller cells. The potential flow solution is used as the initial 
condition to simulate classical flow development experiments. 

At first, a pair of symmetrical vortex will develop and grow. 
Then, instability will set in automatically and vortex shedding 
begins. The calculated flow fields after reaching the stationary 
periodic condition were analyzed and compared with ex
perimental data. The symmetric steady flow field can be ob
tained by averaging the modeled unsteady field over a selected 
shedding period. 

«* 
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Fig. 5 Pressure distribution on the cylinder (Re = 1.4 x10 s and 
8.4 x 106) 
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Fig. 6 Velocity distribution in the wake (Re = 1.4 x 105) 
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Fig. 7 Velocity defect (Re = 1.4 x105 ) 

A. Subcritical Regime. The modeled results for flow of 
Re= U0D/i>= 1.4x 105 (U0 is the far field velocity) using a 
coarser grid system are shown in Figs. 4(b) to 9. The average 
drag coefficient CD = 1.2 and the amplitude of the lift coeffi
cient ACL=0.75, shown in Fig. 4(b), are both quite ac
ceptable. The computed Strouhal number, 0.21, falls in the 
range of the measured values. Both CD and CL vary smoothly 
with time and the frequency of CD is twice that of CL, as ex
pected. Figure 5 shows the comparison of the time-averaged 
pressure distribution on the cylinder surface with the 
measured data [24, 25]. Overall agreement is fairly good. 
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Fig. 9 Velocity vector calculated with coarse mesh (a and b) and fine 
mesh (c and d) 

Figure 6 shows the comparison of the distribution of the 
time-averaged streamwise velocity in the near wake with the 
data obtained by Cantwell [24], using flying hotwire. The 
agreement is quite good, except in the region around the tail of 
the separation bubble. The modeled mean position of the bub
ble tail, defined as the point on the centerline where the veloci
ty Uc is zero, which may be obtained from Fig. 7, is x/D =1.1 . 
This number agrees very well with measured value. It should 
be noted that the calculated velocity on the centerline failed to 
increase further after x/D = 4.0, as it should. This may be the 
result of the two-dimensional flow assumption, which fails to 
simulate the vortex stretching mechanism, and the lack of vor
ticity sink due to the shear stress on the end walls, which usual
ly exist in any experimental setup. 

A typical instantaneous flow field is shown by Fig. 8, where 
the velocity vectors were plotted as if viewed by an observer 
moving downstream at the speed U0. The distance between the 
two rows of eddies is somewhat larger than the measured value 
by Cantwell [24]. Figure 9(a) shows the details of the instan-
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Fig. 10 Variation of drag and lift coefficients with time (Re = 8.4 x 106) 

Fig. 11 Velocity vector and vorticity contour of modeled flow at 
TU0ID = 36.69 (Re = 8.4 x 106) 

taneous flow pattern near the body, where only one eddy oc
cupies the bubble region at this moment and the newly 
generated eddy at the bottom side is just starting to grow. 
Figure 9(b) shows two counter-rotating eddies forming in the 
bubble region at a different phase of the shedding cycle. It 
should be mentioned that these two flow patterns have been 
conjectured by Cantwell [24]. The saddle region or the region 
around the interior stagnation, marked by S in Fig. 9, can also 
be seen in the experimental results. 

B. Supercritical Regime. Flow of Re = 8 .4x l0 6 was 
calculated, and the results are shown in Figs. 5, 10, and 11. 
The average of the drag coefficient is C o = 0.57, which is quite 
reasonable if compared with the measured values, 0.61 
(Re = 4 .3xl0 6 ) by Achenbach [26] and 0.49 (Re = 7.5xl0 6) 
by Schewe [27]. The amplitude of CL is 0.42 and the Strouhal 
number is 0.25 (Fig. 10), which are quite acceptable. Com
parison of the time-averaged pressure distribution with 
Roshko's measurement [28], shows fairly good agreement 
(Fig. 5) except for the value of base pressure, Cpb. The 
calculated Cpb = —0.64, which is larger than Cpb— -0 .85 by 
Roshko. However, the measured data themselves are quite 
scattered. For instance, Cpb=-0.6 for Re = 4 .3x l0 6 and 
Cpb=-0.6& for Re = 3 .6x l0 6 have been reported [26]. It 
should be noted that the flow is quite sensitive to other fac
tors, such as surface roughness and free-stream turbulence in
tensity when it is in the supercritical regime. 

The instantaneous flow field (Fig. 11) shows the calculated 
wake narrower than in the subcritical regime, due to the shift 
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of the location of the boundary-layer separation downstream. 
It can also be seen that the total amount of vorticity being car
ried by each eddy is smaller than in the subcritical regime. 

C. Effect of Grid Size. As might be expected, use of finer 
mesh enables the resolution of finer eddy structures. As an ex
ample, an instantaneous velocity vector field in the near field 
calculated with two different mesh sizes for two comparable 
instants are compared in Fig. 9. Careful observation of Figs. 
9(c) and 9(d) indicate that the finer grid system reveals the 
existence of primary and secondary eddies which merge and 
grow before being shed from the cylinder. 

Also, as a consequence of secondary eddies, the computed 
drag coefficient based on finer grid systems contains at least 
three modes of vibrations with frequencies 2fs, 3/ s , and 4fs, 
where/j is the fundamental frequency of vortex shedding, as 
may be observed in Fig. 4(a) . A problem related to the effect 
of grid sizes is the location of the resolvable primary separa
tion point and the zone of partial-slip condition to be used. 
Based on the same boundary condition, a finer grid system 
will produce a resolvable separation point somewhat farther 
upstream than that calculated with a coarser grid system. 
Future research should be concentrated on the optimum use of 
the hybrid boundary condition in relationship with the value 
of A/5. 

Discussion 

The method proposed above has been shown to be capable 
of simulating the large-scale structures of vortex-shedding 
flows. The calculated large scale feature is quite insensitive to 
the grid size chosen, as expected. Finer mesh systems produce 
finer structures and higher frequency fluctuations but have lit
tle effect on the time-averaged quantities. The agreement of 
the calculated flow quantities with measurements indicates 
that it is possible to approximate the viscous layer on the body 
by the simple hybrid type of boundary conditions proposed 
herein. 

Since the full slip boundary condition is used on the two side 
walls, the side walls do not contribute to vorticity production. 
The full-slip boundary condition should also prevent the vor
ticity from diffusing out through the walls, thus serving as the 
vorticity insulator. This means all the vorticity produced in the 
two P-zones must be eventually transported through the 
downstream end. Numerical results indeed confirm that the 
absolute value of the vorticity (half positive and half negative) 
transported through any cross section downstream of the 
cylinder over a shedding period 7" is equal to the total produc
tion IPT. 

The maximum vorticity in an individual vortex does slowly 
decrease because of the diffusion mechanism, but its coherent 
structure is maintained as far as could be economically 
calculated. The results would be different if the no-slip condi
tion was applied to the side walls to allow diffusion out of the 
region. It was also found that vortices can be made to decay as 
they travel downstream, if a shear stress term representing an 
end-wall effect (considering a finite span cylinder in a rec
tangular duct) is added to the two-dimensional flow equations 
of motion. However, not enough results are available on the 
subject of vortex decay in order for them to be presented in 
this paper. As shown by Song and Yuan [14], it is also well 
known that vorticity may also be produced by the enforcement 
of the Kutta-Joukowski condition in an inviscid flow calcula
tion. Apparently, the large scale structure of the flow is largely 
determined by the total amount of vortex shedding and not 
sensitive to the detailed distribution of vorticity in the 
boundary layer. This is also a likely reason why various vortex 
methods can reproduce the overall flow pattern of large 
Reynolds number flows quite well. Smaller grids and a more 

accurate boundary layer computation would be needed if finer 
details of the flow are to be calculated. 

Conclusions 

The vortex shedding flow about a circular cylinder was 
modeled based on the weakly compressible flow equations 
with a simple subgrid scale turbulence model and a single full-
slip, partial-slip, no-slip boundary condition. It is shown that 
the large-scale vortex shedding phenomenon, the primary vor
tices, and the associated oscillatory lift and drag, can be 
modeled fairly well with a grid system coarser than the 
boundary layer thickness. By refining the grid system it is also 
possible to model a small scale motion related to the secondary 
vortices and the second mode of oscillatory lift and drag. 
Detailed modeling of the boundary layer flow is apparently 
unnecessary for those relatively large-scale time dependent 
phenomena. 
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D I S C U S S I O N 

T. Sarpkaya1 

Using "a grid system coarser than the boundary-layer 
thickness," approximating the primary boundary layers "by 
applying various degrees of partial-slip boundary conditions, 
ranging from full-slip to no-slip, depending on the relative 
magnitude of the boundary layer thickness and the grid size 
chosen," using "the weakly-compressible-flow solver," "a 
simple subgrid scale turbulence model proposed by Smagorin-
sky [18] . . . ," an SGS coefficient of C = 0.5 because it "ap
pears to give reasonable results," calculating the laminar 
separation point at every time step "using the formula of 
Curie and Skan [22]," estimating the turbulent boundary layer 
separation point "using the Stratford formula [23]," assum
ing "rather arbitrarily, that the point NP (where the no-slip 
condition is applied) to be located at a constant distance A6 
upstream of SM (model separation point) in such a way that 
P-zone (partial-slip zone) shrinks to zero when SM is at its ex
treme upstream point," (see authors' Fig. 2), generating vor
ticity only within the two P-zones (partial-slip zones), and im
posing "zero pressure gradient normal to the wall." Song and 
Yuan have arrived at the conclusion that "the large-scale 
vortex shedding phenomenon, the primary vortices, and the 
associated oscillatory lift and drag, can be modeled fairly well 
with a grid system coarser than the boundary layer thickness" 
and that "Detailed modeling of the boundary layer flow is ap
parently unnecessary for these relatively large-scale time-
dependent phenomena." The authors have not carried out a 
sensitivity analysis to determine as to how did their results and 
conclusions depend on the numerous assumptions (some 
rather arbitrary) made by them. Why was not the vorticity 
generated along the entire periphery of the cylinder? How was 
the constant distance Ad chosen? It seems that Song and 
Yuan's numerical experiments required numerous ad hoc 
assumptions to produce or reproduce the "best" or the "ex
pected" solution with errors which are hard to estimate quan
titatively and to minimize systematically. 

The second point to be raised is the so-called "weakly-
compressible-flow solver." It was Chorin (1967) who first in
troduced the "artificial compressibility" method. Song and 
Yuan should have referred to Chorin rather than to themselves 
(their reference [15]) regarding the genesis of the method. In 
the artificial compressibility formulation, a pseudotime 
derivative of pressure is added to the continuity equation [as in 
equation (1) of Song and Yuan], which directly couples the 
pressure and velocity. The equations are advanced in physical 
time by iterating until a divergent-free velocity field is obtain
ed. Numerous versions of this method have been successfully 
used in computing time-accurate problems. 

The last point to be raised concerns the various statements 
made by the authors regarding the generation and destruction 
of vorticity. Some of these are: "In other words vorticity pro
duction and destruction can take place only at the boundary 
but not in the flow field," "This may be the results of the two-
dimensional flow assumption, and the lack of vorticity sink 
due to the shear stress on the end walls, which usually exist in 
any experimental setup," and others. As noted by this writer 
rather recently (Sarpkaya 1989), the generation of vorticity at 
rigid boundaries and its subsequent diffusion and decay have 
been the subject of much discussion. Lighthill (1963) invoked 
the existence of vorticity sources in a region of falling pressure 
along the boundary and vorticity sinks (at which vorticity is 
abstracted at the surface) in a following region of rising 
pressure. This is based on the fact that the tangential-vorticity 
source strength is related to the pressure gradient, at least for 
flow over a stationary plane surface (y = 0), by 

3w7 3 / dv du \ 32i/ 1 dp 

dy dy V dx dy / dy2 p dx 

Batchelor (1967) also noted that "vorticity cannot be created 
or destroyed in the interior of a homogeneous fluid under nor
mal conditions, and is produced only at the boundaries," im
plying that the mechanism whereby vorticity is lost is by diffu
sion to the boundaries. Morton (1984) has finally clarified all 
prior concepts regarding the generation and decay of vorticity. 
His conclusions will be summarized here since the under
standing of where and how the vorticity is lost is of central im
portance in teaching fluid mechanics and in carrying out 
numerical experiments. According to Morton, "vorticity 
generation results from tangential acceleration of a boundary, 
from tangential initiation of boundary motion and from 
tangential pressure gradients acting along the boundary," 
"vorticity once generated cannot subsequently be lost by dif
fusion to boundaries," "reversal of the sense of acceleration 
or of the sense of pressure gradient results in reversal of the 
sense of vorticity generated" (which is interpreted by Lighthill 
as a vorticity sink), "walls play no direct role in the decay or 
loss of voriticity," and "vorticity decay results from cross-
diffusion of two fluxes of opposite sense and takes place in the 
fluid interior." Lighthill (1986) subsequently noted, in con
nection with the discussion of the region of retarded flow 
around an elliptic cylinder and in agreement with the forego
ing, that "there is necessarily new vorticity being generated at 
the solid surface with the opposite sense of rotation to that in 
the boundary layer" and made no mention of the vorticity 
sources and sinks. Suffice it to note that Song and Yuan's con
cepts of generation and destruction of vorticity need updating. 
Finally, it is the writer's opinion that Morton's contribution is 
a seminal one and must be read by every disciple of fluid 
mechanics. 
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T. Sarpkaya1 
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ticity only within the two P-zones (partial-slip zones), and im
posing "zero pressure gradient normal to the wall." Song and 
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C. Dalton2 

There are two major concerns I have about this paper. First, 
there is a question concerning grid size and second is the issue 
concerning the nonphysical assumptions made by the authors 
to put the problem in perspective. First, let us consider the grid 
size question. The drag and lift coefficient results in Fig. 4 at a 
Reynolds number of 1.4 xlO5 show considerable difference 
for the "fine" and "coarse" grid systems. One would 
reasonably expect the more accurate solution to be determined 
for the finer grid system. However, that doesn't appear to be 
the trend here. The drag coefficient for the fine grid seems to 
oscillate about a mean value of 1.5 to 1.6 with no apparent 
identifiable frequency of oscillation. The lift coefficient varies 
in a somewhat sinusoidal manner with peak values at about 
CL = ± 1.3. The trough to trough dimensionless time from the 
lift coefficient plot is 4.3 (= U0T/d, where T is the elapsed 
time from the start of the calculations). The experimental drag 
coefficient is about 1.2 at this Reynolds number while the ex
perimental lift coefficient has no clearly dominant value, but 
±1.3 is certainly consistent with the values reported in the 
literature. The coarse grid yields a drag coefficient value of 
about 1.2 which agrees quite well with the experimental value. 
This favorable comparison is surprising because one would ex
pect the fine-grid solution to have converged because of the 
grid size; in this case, as the grid size became smaller, the solu
tion deviates from the expected value. For the coarse grid, the 
lift coefficient oscillates with a very smooth sinusoidal 
behavior between peak values at about ±0.7 to 0.8. The 
calculated lift coefficient range is somewhat less than the 
values one would expect based on experimental results. One 
would also not expect to see such a smooth behavior in the lift 
coefficient; the wake is very turbulent at this Reynolds number 
(just below the critical value where the boundary layer 
becomes turbulent) and the lift coefficient should be 
somewhat irregular. The drag coefficient oscillates at twice the 
lift coefficient frequency as expected, but, unexpectedly, there 
is a slight phase difference between the lift and drag coeffi
cients. For the coarse grid, the dimensionless time between 
peaks is 5.1, which doesn't compare well to the fine grid value 
of 4.3. In addition, the two lift coefficient plots are con
siderably out of phase. This phase difference is another indica
tion that something is amiss when the "coarse" and "fine" 
grid solutions are compared. Again, one would expect the 
more accurate solution to be obtained for the finer grid; this is 
not the case for these calculations. The converged solution 
should not be grid dependent. The authors calculated 
reasonable values of drag and lift coefficients at a supercritical 
Reynolds number of 8.4 x 106. The lift coefficient plot, shown 
in Fig. 4, is again remarkably smooth for a turbulent flow 
situation. However, the authors do not tell us if the super
critical case is for the "coarse" or "fine" grid, nor do they of
fer any comparison between values calculated for the two dif
ferent grids. 

Department of Mechanical Engineering, University of Houston, Houston, 
Texas. 

The second issue I have with this paper concerns the 
assumptions made by the authors. Regarding the concept of 
vorticity generation, I have a problem with Fig. 2. It is dif
ficult for me to understand how the shed vorticity can be 
calculated due to effects that occur after the separation point. 
The authors state in the discussion concerning Fig. 2 that the 
no-slip boundary condition is not enforced in the region ahead 
of the separation point SB. All of the vorticity is assumed to 
be generated in the P region, i.e., after separation. (In effect, 
they are saying that the P region contains vorticity sources.) 
They do not discuss the size of the P zone; but by controlling 
its size, they should be able to produce whatever results they 
desire. This type of ad hoc assumption is not necessary to do 
meaningful calculations. I feel that, for a calculation pro
cedure to be technologically acceptable, it must utilize 
assumptions that have a ring of reality. I do not think that this 
paper meets that criterion, nor does the grid size influence the 
results in the expected manner. Thus, it is difficult to have 
confidence in these results and to recommend use of the 
method. 

Authors' Closure 

Both Professors Sarpkaya and Dalton questioned the fun
damental concept of vorticity production described in the 
paper and doubted the accuracy of the computation using the 
grid sizes larger than the boundary layer thickness upstream of 
the boundary layer separation point. Answers to these, and 
other questions, are listed below: 

1. The concept of vorticity production and destruction 
described in the paper for the purpose of explaining why 
the computational results using fairly coarse grids can ac
curately represent the lower modes of vortex shedding 
flow is entirely consistent with that of Lighthill (1963), 
Batchelor (1967), and Morton (1984)—papers referred to 
by Professor Sarpkaya. Because the vorticity transport 
equation contains no source term, vorticity can be 
generated only at the boundary or transported to the flow 
domain of interest through the upstream end (which is 
also a boundary). The viscous term is responsible for the 
diffusion of vorticity and tends to make the vorticity 
distribution more uniform. If there are vorticities of dif
ferent signs in the flow field, which is the case of flow 
around a circular cylinder, then the diffusion mechanism 
will act to cancel them out. However, the total vorticity in 
the flow field is conserved. In other words, the annihila
tion of positive and negative vortices in the flow field is a 
diffusion phenomenon and should not be confused with 
vorticity sink. 

2. For a very thin boundary layer, the total vorticity flux is 
shown to be equal to 

dV 

~dT 
U2 

(1) 

where U is the speed of flow at the outer edge of the boun
dary layer or the inner edge of the outer nonviscous flow. 
Because equation (1) contains no viscosity, the vorticity 
production is an inertia phenomenon. The production 
rate per unit length of the boundary is, by differentiating 
equation (1), 

d2r dU 
= U-^- (2) dxdt dx 
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Streak Characteristics and 
Behavior Near Wall and Interface 
in Open Channel Flows 
Turbulent structures near the boundaries {solid wall and gas-liquid interface) have 
been studied in open channel flows. Experiments with no shear, countercurrent 
shear, and cocurrent shear at the gas-liquid interfaces were conducted. Results 
indicate that near the sheared interfaces, the mean nondimensional span wise streak-
spacing, \+, appears to be essentially invariant with shear Reynolds number, ex
hibiting consistent values of X+ ^lOOaty^ = 5, while increasing with distance from 
the interface. Observation of the streaks near the interface indicates that the process 
of streak merging is active even for y( <S. Further studies show that the low-speed 
streaks frequently occur as regions between longitudinal vortices separated by 
Az" —50 near the boundaries. These vortices generally originate from the boundaries 
at an angle of about 20-25 deg (for y+ <20), then lift up or eject chaotically at an 
angle of about 40-50 deg (for y* >20). Based on these observations, a conceptual 
mechanism of streak breakdown near the sheared boundaries has been provided. 

Introduction 

One of the most significant findings in turbulence has been 
the discovery of the organized or coherent structures, namely 
the existence of an ordered structure within a turbulent bound
ary layer. The investigation of ordered structures dates back 
to the experiments of Fage and Townend (1932) who used an 
ultramicroscope to examine fluid motion near a solid boundary 
for turbulent flow in a square tube and a circular pipe. They 
found that the region very close to the wall (0<y* <4) did 
not behave like a laminar liquid film but was periodically 
disturbed by fluctuations. Later, the measurements of Laufer 
(1954) and Klebanoff (1954) near the wall both showed that 
the rate of production of turbulent energy peaks at the outer 
edge of the viscous sublayer (y^, = 11.5) as does the dissipation 
of this energy. Their results illustrated the importance of the 
region very close to the wall (5 <yl s 20) which was the primary 
motivation for the early work of Kline and Runstadler (1959) 
and later Kline et al. (1967). 

Kline et al. (1967) did the first systematic investigation and 
quantification of the low-speed/high-speed phenomenon. They 
found through a series of flow visualization experiments using 
hydrogen bubbles that even at y* =2.7 the bubbles did not 
follow straight trajectories and they accumulated into an al
ternating array of high-speed and low-speed regions called 
"streaks." They observed that these structures periodically 
lifted off, oscillated, then became unstable and broke up cha-
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otically. The repeating cycle of events ended with an insweep 
or inrush of fresh fluid to replace the ejected fluid in the wall 
region. Kim et al. (1971) showed that virtually all of the net 
production of turbulent energy for the range, Q<yt < 100 oc
curs during the lifting and breakdown of these streaks. Both 
ejection and insweep events were later shown by many authors 
to be extremely important and contributing to as much as 60-
80 percent of the production of Reynolds stresses (Grass, 1971; 
Willmarth and Lu, 1972; Nakagawa and Nezu,1977). Exper
iments of Grass (1971) also showed that the ejection and the 
insweep events were present irrespective of the surface rough
ness. 

Blackwelder and Eckelmann (1979) were able to make a 
rather detailed study of the structure of wall streaks using a 
combination of hot-film sensors and flush-mounted wall ele
ments. They identified the low-speed streaks observed by Kline 
et al. and others as the regions between pairs of counter-
rotating streamwise vortices. They found the streamwise vor
tices to be separated by Az + =50 and their length to be 
Ax+ = 1000. Their findings were in essence later confirmed in 
probe-correlation studies by Kreplin and Eckelmann (1979). 
The point that the low-speed streaks may be the regions be
tween counter-rotating streamwise vortices is fascinating be
cause it brings up the conjecture (suggested earlier by Kline et 
al., 1967; Hinze, 1975; Smith 1983; among others) that the 
streamwise vortices at the wall may actually be the upstream 
legs of horseshoe vortices seen by Head and Bandyopadhyay 
(1981). Head and Bandyopadhyay studied the turbulent 
boundary-layer structures using smoke visualization of the wall 
region. They illuminated the flow with sheets of lights entering 
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through the bottom of their channel at two different angles. 
When the sheet was inclined in the flow direction, they observed 
an eddy-like structure lay on that plane. However, when the 
sheet was angled against the flow direction, they observed two 
roughly circular spots in the plane of illumination. These ex
periments showed that horseshoe or hairpin shape structures 
existed in the log layer region but no direct connection was 
made between these and the low-speed/high-speed streaks at 
the wall. 

More recently, Nakagawa and Nezu (1981), Smith and Met-
zler (1983), Moin and Kim (1985), Luchik and Tiederman 
(1987), Kim et al. (1987), and Lam and Banerjee (1988), among 
others, have been able to confirm some characteristics of the 
streaks and the vortices discussed above, however, there are 
still many unanswered questions in the way of our understand
ing of the phenomena. 

In view of the significance of this problem, in particular its 
relevance to the understanding of turbulent transport processes 
at the gas-liquid interface, an extensive program has begun in 
our laboratory. The present work is part of a continuing in
vestigation of turbulence structure and transport mechanisms 
in liquid layers bounded by a solid wall and a gas-liquid in
terface. The first paper in this series, Rashidi and Banerjee 
(1988), was concerned with the dominant large-scale structures 
in the flow arising from lift up and breakdown of the low-
speed streaks, i.e., "bursts," in the wall region, when no shear 
was imposed on the interface. The "bursts" were observed to 
originate from the near wall region, reach the gas-liquid in
terface, roll off, and mix into the flow leading to characteristic 
rotational structures. Furthermore, the burst brought fresh 
fluid to the interface giving rise to patches of "renewed sur
face" that are of importance in interfacial heat and mass trans
fer. In the second paper, Rashidi and Banerjee (1990), shear 

was imposed at the gas-liquid interface by countercurrent and 
cocurrent gas flows. These experiments showed for the first 
time the formation and breakdown of low-speed/high-speed 
streaks near the sheared interfaces and provided some char
acteristics of these structures. In particular, it was shown that 
there was a critical shear rate at which the streaks began to 
form at the interface. The critical point of appearance of the 
streaks was expressed in terms of the dimensional shear rate 
(du/dy) to be in the range of about 8 to 10 s~'. 

The present paper reports on some characteristics of the 
interface and the wall streaks, in an attempt to relate the streak 
formation and breakdown near the boundaries to the horseshoe 
or hairpin vortices observed in the log layer (Head and Ban-
yopadhyay, 1981). 

Experimental Facilities and Procedures 
The equipment used for the present study was a plexiglas 

rectangular channel with gas and liquid cocurrent and coun
tercurrent facilities (shown in Fig. 1). The channel itself was 
made up of four equal sections and had dimensions of 4.0 m 
long, 0.20 m wide, and 0.15 m deep. Measurements were taken 
at a location of the channel sufficiently downstream from the 
entrance to ensure that the flow was fully-developed turbulent 
with regard to the mean velocity profile (Schlichting, 1979). 
Both fluids, air and water, were filtered before entering the 
channel. In the case of water, the circulating flow was filtered 
continuously to remove solids greater than 5 /im. The liquid 
flow rate was provided by a Jacobs centrifugal pump and was 
continuously measured using an Aeroquip Venturi meter. The 
gas flow rate was maintained through the use of two Dayton 
shaded pole blowers in series. In order to measure gas flow 
rate accurately, a rotary precision gas meter (7M125) was used 

Fr 
h 

Re 
Re. 

u,w 
u* 

x, y, z 

N o m e n c l a t u r e 

Froude number, uM/(gh)n 

flow depth 
Reynolds number, uMh/i> 
friction Reynolds number, 
u*h/v 
mean streamwise velocity 
friction velocity, (j/p)'A 

streamwise, vertical, and 
spanwise coordinates 
nondimensional streamwise 
distance, u*x/v 

y+ = nondimensional vertical dis
tance, u*y/v 

z* = nondimensional spanwise 
distance, u*z/v 

a. = growth angle between longi
tudinal vortices and bound
ary 

/} = ejection angle between lon
gitudinal vortices and 
boundary 

X = mean spanwise streak-spac
ing 

X+ = mean nondimensional span-
wise streak-spacing, u*\/v 

v = kinematic viscosity 
p = density 
T = shear stress at boundary 

Subscripts 

G = gas 
7 = gas-liquid interface 

L = liquid 
W = wall 
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Table 1 No gas flows 

Run 

la 

2a 

3a 

4a 

5a 

Liquid 
Flow 
Depth 

b 
(cm) 

3.65t0.05 

2.75 

2.75 

2.75 

2.70 

Liquid 
Mean 
Velocity 

UM 

(cm/sec) 

Wall 
Fricuon 
Velocity 

(cm/sec) 

23.9±2.3% 1.26 

23.6 

15.6 

11.0 

7.8 

1.29 

0.90 

0.66 

0.49 

Liquid 
Kinematic 
Viscosity 

V 

(cmVsec) 
x 100 

0.858 

0.848 

0.839 

0.830 

0.821 

Shear 
Reynolds 
Number 

Re-* 
(u.„h/v) 

536 

418 

245 

219 

161 

Liquid 
Froude 
Number 

Fr 
( I V v l M 

0.40 

0.46 

0.30 

0.21 

0.15 

Liquid 
Reynolds 
Number 

Re 
WJl'v) 

10.000 

7,500 

5.000 

3.500 

2.500 

Table 2 Countercurrent gas flows 

Run 

lb 

2b 

3b 

4b 

Liquid 
Flow 
Depth 

h 
(cm) 

2.85+0.05 

2.85 

2.85 

2.85 

Liquid 
Mean 
Velocity 

UM 

(cm/sec) 

7.4±2-33. 

7.4 

7.4 

7.4 

Liquid 
Kinematic 
Viscosity 

V 
(cmVsec) 

x 100 

0.839 

0.839 

0.839 

0.839 

Shear 
Reynolds 
Number 

Re., 
(u.,h/v) 

156 

136 

98 

78 

Liquid 
Froiide 
Number 

Fr 
(WIS) 

0.14 

0.14 

0.14 

0.14 

Liquid 
Reynolds 
Number 

Re 
(U„Wv) 

2,500 

2,500 

2,500 

2,500 

Gas 
Reynolds 
Number 

Reo 
(U«IWv 0 ) 

16.600 

14,000 

10,200 

7.700 

Table 3 Cocurrent gas flows 

Run 

1c 

2c 

3c 

4c 

Liquid 
Flow 
Depth 

h 
(cm) 

2.85±0.05 

2.85 

2.85 

2.85 

Liquid 
Mean 
Velocity 

U„ 
(cm/sec) 

7.412-395. 

7.4 

7.4 

7.4 

Liquid 
Kinematic 
Viscosity 

V 
(cmVsec) 

x 100 

0.839 

0.839 

0.839 

0.839 

Shear 
Reynolds 
Number 

Re., 
(u.,h/v) 

153 

132 

95 

71 

Liquid 
Froude 
Number 

Fr 
(V0) 

0.14 

0.14 

0.14 

0.14 

Liquid 
Reynolds 
Number 

Re 
(U„h/v) 

2,500 

2,500 

2.500 

2,500 

Gas 
Reynolds 
Number 

Rcc, 
(UaolWVc.) 

16.600 

14,000 

10,100 

7.100 

to monitor the flow during each run. Temperature measure
ments were taken at entrance, exit, and test section of the 
channel using thermocouples placed both in gas and liquid. 
These measurements were also simultaneously checked with 
precision mercury thermometers placed at these locations. 

Measurements were primarily made in the liquid stream by 
a variety of techniques. The first was through the use of very 
small (-20 fim) oxygen bubbles (Rashidi and Banerjee, 1988) 
that were photographed using a high-speed video analyzer (Ko
dak Ekta Pro 1000) and two strobe units. Alternatively, some 
photographs were also taken with a 35 mm camera and me
chanically chopped flashes. This resulted in well-spaced traces 
of bubbles in a film frame from which velocities were found 
by image processing. In addition, local velocity measurements 
were also taken with a 3D laser Doppler anemometer with a 
focal volume of 30 ^m x 30 fim x 30 fim. In this paper, the 
results obtained using the first technique, namely the oxygen 
bubbles and high-speed video photography will be discussed. 

The bubbles could be generated from two platinum wires 
25 (mi in diameter. One wire was held vertically across the 
channel, while the other wire was strung horizontally parallel 
to the bottom of the channel and aligned in the spanwise 
direction. The horizontal wire was 0.18 m in length and was 
uniquely designed so that it could be moved up and down. 
This allowed the distance between the wall and the wire or 
between the interface and the wire to be varied. The bubbles 
were produced by pulsing a high voltage generator capable of 
providing high voltage pulses of up to 300 V at very short 
durations. This gave rise to a series of marker lines that could 
be used to visualize and photograph the fluid motion. 

The video viewing and recording system was a two-camera 
Kodak EP-1000 high-speed motion analyzer with conventional 
and fiber-optic synchronized-strobe units. The system had a 
maximum full screen capability of 1000 frames/sec and a max
imum split-screen capability of 6000 frames/s. The split-screen 
capability allowed two different fields of view to be simulta

neously displayed on the monitor and recorded on the tape. 
The recorded data could be played back in flicker-free slow 
motion (30 frames/s), as well as single frames (1, 2, 3, and 4 
frames/s) for detailed data analysis. One camera was used to 
record the flow structures in the vertical plane, while the other 
captured the structures in the horizontal plane. 

Experimental Conditions 
The details of the experimental conditions are summarized 

in Tables 1, 2, and 3. The subscripts: W, I, L, and G are 
throughout this paper in reference to the wall, interface, liquid, 
and gas, respectively. However, since most measurements are 
with respect to the liquid streams, the subscript L is generally 
omitted in the results for simplicity. The three cases studied 
were (i) no gas flows, (ii) countercurrent gas flows, and (iii) 
cocurrent gas flows. As discussed earlier, it was possible to 
impose a shear on the gas-liquid interface by flowing gas either 
cocurrent or countercurrent to the direction of liquid flow. 
For the first case, no gas flows, experiments were conducted 
at five different liquid Reynolds (and Froude) numbers. The 
values of wall friction velocity for these runs were evaluated 
from the measured mean velocity profiles. On the other hand, 
the countercurrent flow and cocurrent flow cases were done 
at one liquid Reynolds (and Froude) number, while varying 
the gas Reynolds number to achieve different levels of shear 
at the gas-liquid interface. The value of Reynolds numbers 
reported here are based on the flow depth. Reynolds numbers 
based on hydraulic diameter are about three times greater than 
what is reported here. The interfacial friction velocities listed 
in Tables 2 and 3 were computed from the mean velocity 
gradients near the interface. 

Results 
A. Streak Formation. The low-speed/high-speed streaks 

were studied in detail near the wall and sheared interfaces. 
Figure 2 illustrates the low-speed/high-speed streaks that form 
near the wall and near the interfaces of countercurrent and 
cocurrent flows. It is clear that the wall streaks have similar 
characteristics to those observed by many others. On the other 
hand, the streaks found at the interfaces are seen to be more 
pronounced (with respect to the differential velocities between 
the adjacent high-speed and low-speed regions) than the wall 
streaks. In the case of cocurrent flows, since the gas-liquid 
interface is moving faster than the mean flow, the streaky 
structure is reversed compared to that at the wall or the coun
tercurrent flow case. This means that since the direction of 
interfacial shear rate has been reversed in these cocurrent flow 
runs, the low-speed regions of the two previous cases now 
appear as the regions with higher velocities (relative to the 
mean interfacial velocity). 

Characteristics of the streaks, mainly their mean spacings 
were determined from the video sequences obtained using the 
high-speed video system discussed before. For each run, a video 
sequence of at least 22,000 frames (~3 min) was recorded. 
From this sequence, 60-80 frames were analyzed. This cor
responded to at least 200 counts of the streaks. The streak 
counts were done based on a set of systematic rules. The streaks 
were counted from individual still pictures with each picture 
about 100 frames apart. This was done twice independently. 
The counting of streaks were performed when the upstream 
end of the streaks were still within Ax+ ~ 50 downstream of 
the wire. It was also required that the differential velocities 
between the adjacent high and low-speed regions to be at least 
1.5 to 1. If it appeared that the two adjacent low-speed regions 
had no well-defined high-speed region (i.e., had merged), they 
would be counted as one. Figure 3 shows the variation of the 
mean non-dimensional spanwise streak-spacing, X+, as a func
tion of shear Reynolds number for the interface streaks. It is 
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Fig. 3 Mean nondlmensionai spanwlse streak·spaclng A+ :!: 7 percent
(95 percent confidence level), as a function of shear Reynolds number
at Yi =5:!: 1. 0, Interface streaks: countercurrent gas flow; ., Interface
streaks: cocurrent gas flows
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Fig. 4 Variation of mean nondlmenslonal spanwlse streak·spacing
A+ ± 7 percent (95 percent confidence level), with nondlmenslonal dis·
tance Yt ± 1 from the boundaries, 0, wall streaks: no gas flow, Run 3a;
0, interface streaks: countercurrent gas flow, Run 1b; 4, Interface streaks:
cocurrent gas flow, Run 1c

Measurements of the mean non-dimensional spanwise streak
spacing, A+, as a function of the non-dimensional distance,
y+, were also obtained near the sheared interfaces. Beyond
y+ = 30 the streaks were not sufficiently well defined to obtain
accurate streak counts. Figure 4 shows comparison of the re
sults near the wall (Rashidi and Banerjee, 1990) and near the
sheared interfaces. It appears that the value of A+ increases
with increased distance from either boundaries. This increase

(el

clear that the mean spacing of the streaks non-dimensionalized
with the interfacial shear velocity (u./) and kinematic viscosity
(1'), changes very little with the shear Reynolds number and
exhibits consistent values of A+ "" 100 ± 7 percent (95 percent
confidence level) at yt = 5 ± 1. The variation of streak-spacing
near the wall was also shown to be independent of Reynolds
number by Rashidi and Banerjee (1990). This is an important
finding, since the boundary conditions are quite different at
the wall and at the interface. Rashidi and Banerjee (1990)
studied the effect of boundary conditions and shear rate on
the streak formation and breakdown. They concluded that the
shear rate has the main influence on the phenomena and the
effect of boundary conditions is much less important.

Fig. 2 Low·speedlhlgh·speed streaks visualized by means of oxygen
bubbles In horizontal plane at y' 5:!: 1 (s) near wall: no gas flow, Run 3a;
(b) near Interface: countercurrent gas flow, Run 1b; (c) near Interface;
cocurrent gas flow, Run lc.
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Fig. 5 Interfacial streaks at various distances from interface (Yt :!: 1)
for countercurrent gas flow, Run 1b, (a) yt =2; (b) y,' =10; (c) yt =20.
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Fig. 7 Variation of Inclination angles a:!: 5 percent (95 percent confi·
dence level) and {J:!: 2.5 percent (95 percent confidence level), as a func·
tion of Reynolds number for longitudinal vortices near wall

current gas flows, and cocurrent gas flows. In each picture,
the upper portion provides the horizontal view of the structure
(near the wall for the first case and near the interface for the
other two cases), while the lower portion gives the vertical
plane view. As seen from the pictures and the video sequences,
it appears that the breakdown of the streaks is associated with
formation of vortex-like structures near both boundaries (wall
and interface). This is shown by the folding of the bubble
markers in the lower portion of each picture and the corre
sponding longitudinal vortex-like structure in the upper portion
of each picture. Observation of the video sequences indicates
that these vortices (which may be conjectured as the legs of
the hairpin vortices seen by Head and Bandyopadhyay, 1981)
are generally inclined to the boundary at an angle Ci (growth
angle) for y+ < 20 and go through a chaotic lift-up or ejection
at a larger angle (3 (ejection angle) for y+ > 20. These vortices
usually go through several ejections before they completely
break up and lose their identities. The average variation of
angles Ci and (3 as a function of Reynolds number are shown
in Fig. 7. The data in this figure correspond to 200 measure
ments of the angles for each run. It appears on the average
that the longitudinal vortices form near the wall at an angle
of about 20-25 deg ± 5 percent (95 percent confidence level)
for y,;, < 20, but lift up chaotically at an angle of about 40-50
deg ± 2.5 percent (95 percent confidence level) for y,;, > 20.
It is interesting to mention that Heidrick et al. (1971) in an
earlier work, also found inclined structures to the wall using
two closely placed hot film velocity sensors. They showed that
the inclination angle increased with distance from the wall, i.e.
for y:' < 30 the inclination angle was seen to be less than 45
deg while increasing to 45 deg for y,;' == 30. However, they did
not perform any conditional averaging to isolate the dynamics
of these structures and relate them to the vortices observed in
the present work (Moin and Kim, 1985 and Gad-el-Hak and
Hussain, 1986 provide good reviews of the various angles of
the near wall vortices observed by others).

It is also worth noting that an increase in Reynolds number
causes a decrease in these angles as seen from Fig. 7. Head
and Bandyopadhyay (1981) observed a similar effect near the
wall, namely that an increase in Reynolds number resulted in
a decrease in the inclination angle of the hairpin vortices i.e.,
as Reynolds number increases, (due to the increase in the shear
rate) the longitudinal vortex loops are pulled closer to the wall
and their spacing is decreased. In addition to the wall region,
the values of angles Ci and (3 were measured near the sheared
interfaces. These values near the interfaces of countercurrent
and cocurrent gas flows (Runs Ib and Ic) reveal similar ranges
of 20-25 deg and 45-50 deg for the two angles, respectively.

In order to investigate further the association of longitudinal
vortices with the low-speed streaks near the boundaries, both
vertical and horizontal wires were employed to generate oxygen
bubble tracers in the flow. In this way, the streaky structure

,n,

Ie

Fig. 6 Sequential pictures of formation, growth, and breakdown of Ion·
gitudinal vortices. (a) near wall: no gas flow, Run 3a; (b) near interface:
countercurrent gas flow, Run lb; (c) near Interface: cocurrent gas flow,
Run 1c. Time intervals between photographs are 0.08, 0.16, and 0.16 sec
for Runs 3a, 1b, and lc, respectively.

has been seen from our video sequences to be caused by the
two effects of fluttering and. merging or coalescence of the
low-speed streaks. Observations of the streaks near the wall
show that the merging of the low-speed streaks begins at about
y,;, == 5 and continues to be dominant for 10 ~y,;' ~ 30. How
ever, similar observations near the interface show that the
process of streak merging or coalescence begins to occur at
yt < 5 and continues to be dominant up to yt == 30. These
examinations seem to agree with the variation of the streak
spacing reported above, namely that near the wall 0':' ~ 5) the
streak-spacing appears to be approximately constant (Oldaker
and Tiederman, 1977) and increases (monotonically) for
5~y:' ~ 30, whereas near the interface the streak-spacing in
creases monotonically throughout for 2~yt ~ 30. Figure 5
illustrates the interfacial streaks at various distances from the
interface for countercurrent gas flow case.

B. Streak Breakdown. In order to study the detail of
streak formation and breakdown near the two boundaries, the
high-speed video system and the two cameras were used to
view simultaneously the streaky structure in the horizontal
plane and the lift-up and breakdown of the streaks in the
vertical plane. Figure 6 illustrates the sequence of pictures
obtained this way for the three cases: no gas flows, counter-
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Fig.10 Conceptual mechanism of streak breakdown near the boundary
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Fig. 8 Sequential pictures (from right to left) of low·speed streaks and
longitudinal vortices near wall (Run 3a). Time interval between photo.
graphs is 0.020 s.

Fig. 9 Sequential pictures (from right to left) of low·speed streaks and
longitudinal vortices near wall (Run 3a). Time interval between photo·
graphs is 0.020 s.

and the orientation of the longitudinal vortices were viewed
in the horizontal plane with one camera, while the lift up and
breakdown of the vortices were seen in the vertical plane with
the other camera. Observation of the video sequences revealed
that the low-speed streaks frequently occur as regions between
pairs of longitudinal vortices near the boundary. Figures 8 and
9 illustrate sequential pictures (in the horizontal plane) of for
mation of these vortices adjacent to a low-speed streak near
the wall. It appears from these pictures and many others that
the bubbles generated from the vertical wire break up into two
vortex-like structures along the streamwise direction. The vor
tices visualized this way generally form on either side of the
low-speed streaks. From the video sequences of the events, it
appears as if these vortices are the counter-rotating legs of the
elongated loops in the flow direction. Furthermore, the span
wise distance between these vortices seems to be about
0.5 A+(Az+ "'50).

These results reinforce our earlier conjecture that the lon
gitudinal counter-rotating vortices seen by Blackwelder and
Eckelmann (1979) (among others) are perhaps the legs of hair
pin or horseshoe vortices observed by Head and Bandyopa
dhyay (1981). Blackwelder and Eckelmann suggested that the
observed inclined vortices could perhaps be the results of the
instabilities caused by a high-speed sweep interacting with a
low-speed streak while forming a localized free shear layer.
However, the sequences of video films obtained here show that
the longitudinal vortices seldom locate themselves in the re
gions of the low-speed streaks. They generally form in pairs
with each vortex on either side of a low-speed streak.

C. Conceptual Mechanism of Streak Breakdown. The
general picture arising from the present experiments and ob
servations of previous investigators can perhaps be best illus
trated by Fig. 10. This illustration is similar to the ones suggested
by some other investigators (Kline et al., 1967; Blackwelder
and Eckelmann, 1979; Hinze, 1975). It appears that the low
speed streaks observed near either the wall or the sheared
interfaces are perhaps formed between the pairs of the lon
gitudinal counter-rotating vortices (Head and Bandyopadhyay,
1981). These vortices are elongated in the direction of flow
and are separated in the spanwise direction by Llz+ '" 50. The
legs of these vortices are inclined at an angle of about 20-25

deg to the boundary for y+ < 20. As they grow above y+ '" 20,
they begin to flutter up and down and sideways, till they go
through several ejections and lose their identity. The ejection
process transports low momentum fluid away from the bound
ary causing the rolling of the eddies that move with the mean
flow (Rashidi and Banerjee, 1988).

Although the present experiments provide some convincing
results to support the mechanism discussed above, many im
portant questions remain to be answered. In particular, it is
not yet clear as to why the flow primarily organizes itself in
this manner near the sheared boundaries.

Conclusions
The results of the present visualization study indicate that

near the sheared interfaces, the mean non-dimensional span
wise streak-spacing, A+ , appears to be essentially invariant with
shear Reynolds number, giving consistent values of A+ '" 100
at yt = 5, while increasing with distance from the interface.
The increase in A+ appears to be the results of both a merging
or coalescence of the streaks (seen to occur even at yt < 5, as
opposed to the wall region) and an intermittency effect due to
fluttering in the upper extent of the low-speed streaks.

The simultaneous observation of streak formation (in the
horizontal plane) and the streak breakdown (in the vertical
plane) indicates that the low-speed streaks frequently occur as
regions between the longitudinal vortices near the boundaries.
Examination of these vortices shows that they originate from
the boundaries at an angle of about 20-25 deg (for y+ < 20)
and begin to lift up or eject chaotically at a larger angle of
about 40-50 deg (for y+ >20). Based on the present experi
ments and observations of previous investigators, a conceptual
mechanism of streak breakdown near the sheared boundaries
has been illustrated (Fig. 10).
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The Three-Dimensional Jet-Jet 
Impingement Flow in a Closed-
End Cylindrical Duct 
Experimental and theoretical studies are reported on the three-dimensional jet-jet 
impingement flow in a closed-end cylindrical duct with two 60-deg side inlets. The 
measurements were made using the laser-Doppler velocimeter. The Reynolds 
number based on the air density, duct diameter, and bulk velocity was 2.6 x JO4. The 
governing partial differential equations were solved numerically with the k-e tur
bulence model. The flow field was characterized in terms of the mean velocity and 
turbulence intensity components, the swirl intensity, the stagnation points, and the 
mass flow bifurcated into the head region and was found to be weakly dependent on 
the head height. Simple geometrical expressions were deduced and were found to ef
fectively estimate the stagnation points and the optimal head height. Furthermore, 
the dependence of the mass flow into the head region on the head height was found 
to parallel the dependence of the combustion efficiency and flame stability on the 
head height. 

Introduction 

The flow field in a closed-end cylindrical duct with two or 
more jets introduced through ports in the duct periphery (Figs. 
1-2) is very complicated since it is characterized by a synthesis 
of a number of diverse flow modulus. These flow modulus are 
the inlet jets, the jet-jet head-on collision, the jet-wall im
pingement, the recirculating flow in the separated region, and 
the developing duct flow far downstream of the inlet ports. 
Such a flow field has several practical applications; for exam
ple, it is one of the flow fields involved in internal biofluid-
dynamics (Lighthill, 1975). Additionally, the impingement of 
jets provides one of the most effective ways to mix the fluids, 
and is an important feature of the flow field in utility boiler 
furnaces and in side-dump ramjet combustors. Therefore, a 
better understanding of such a flow field is highly desirable. 
Especially, the role of the head height (LJ), which denotes the 
distance between the closed end (i.e., head plate) and the 
upstream edge of the inlet ports, deserves the special interest 
since the vortices generated in the head height region can serve 
as a flame stabilizer such that there is no need to place the 
physical flame holder in the combustor. 

Shahaf et al. (1980) first conducted an investigation on the 
two-dimensional (2-D) mean flow field in a square cross-
sectional channel with two side inlets both analytically and ex
perimentally. Large discrepancies between the measured and 
calculated axial mean velocity profiles were found along the 
channel axis and in the recirculation region. No measurements 
were made in the head region and no information relevant to 
the influence of the head height on the jet-jet impingement 
flow field was reported. Choudhury (1982) experimentally 

tested the combustor performance of a gas generator ramjet 
with four side inlets and concluded that the system of vortices 
in the head region is crucial to the stable operation of the com
bustor. They also concluded that the inlet flow angle does not 
have any influence on the vortex system in the head region of 
their combustor. More importantly, they found an optimal 
head height for the best flame blowoff performance; however, 
they did not provide detailed physical explanation to the ex-
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Fig. 1 Schematic drawing of overall experimental system 
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Fig. 2 Sketch of configuration, coordinate system and dimensions of a 
dual-inlet closed-end cylindrical duct (Uncertainty in Xc position: less 
than ±0.3 mm, In fic position: less than ±0.3 mm, in 6C: less than ±1.5 
deg, in D c : less than ±0.3 mm, in Ld : less than ±0.5 mm) 

istence of such an optimal head height. Vanka et al. (1983) 
calculated the three-dimensional mean flow field in a cylinder 
combustor with two side inlets separated by an azimuthal 
angle of 90 deg. Two head heights were studied. They ob
served the main effects of the smaller head height are to com
press the head recirculation region and to alter its shape by 
making the eddy form near the central region. Their calcula
tions, however, did not predict a vortex pattern in the head 
region in the 6C= 180 deg plane shown by flow visualization 
(Stull et al., 1985). Vanka et al. (1985) further performed 
calculations of the three-dimensional reacting flow in the same 
combustor. They also found an optimal head height for the 
best combustion efficiency. Nonetheless, as pointed by Vanka 
et al., there are no experimental data to validate the turbulence 
and combustion models used in their calculations. In view of 
the lack of quantitative experimental data, particularly the 
turbulence data, with which to compare numerical predic
tions, Liou and Wu performed detailed mean velocity and tur
bulence intensity measurements in curved 60-deg inlet ducts 
(Liou and Wu, 1986) and in a three-dimensional side-dump 
cylindrical combustor (Liou and Wu, 1988) using Laser-
Doppler velocimetry (LDV); nevertheless, their measurements 
were carried out only at a single head height. 

The brief literature survey made above clearly suggests that 
a further study on the effects of the head height on the jet-jet 
impingement flow field in a closed-end cylindrical duct both 

experimentally and analytically would be worthwhile. Accor
dingly, this paper presents both LDV measured and 
numerically calculated results for the flow in such a configura
tion with L*j varied in the range of 0 to 4. The measurements 
were made using LDV since the flow reversal in the head recir
culation region and the large turbulence fluctuations 
generated by the jet-jet impingement make the use of hot-wire 
technique impractical. Furthermore, the flow field will be 
characterized in terms of both the mean velocity and the tur
bulence intensity since the foregoing literature survey indicates 
that the turbulence information is lacking. In addition to the 
numerical computations, simple geometrical relations will also 
be derived to aid in understanding the flow characteristics. It 
is hoped that the results presented in this study will provide 
useful information to the researchers in this area. 

In the following sections of this paper, the experimental 
system and the theoretical treatment are stated first. The com
puted mean flow patterns are subsequently discussed and com
pared with LDV measured results. Then, the measured mean 
velocity and the turbulence intensity at various streamwise 
cross sections are presented in detail. Finally, simple 
geometrical expressions are used to estimate the locations of 
some critical stagnation points and the optimal head height. 

Experimental Apparatus and Conditions 

Experimental System. The closed-end cylindrical duct 
with two side inlets and LDV experimental set-up is shown in 
schematic form in Fig. 1. Air was drawn into the curved side 
inlets and a 10:1 contraction by a turbo blower (3500 rpm/3 
phase/10 hp) at the downstream end. The air then flowed into 
the curved side inlets, the cylindrical duct, a flow straightener, 
a rotameter, a bellows; and was exhausted by the blower 
which was driven by a dc motor. 

The LDV optics were set up in a dual-beam forward or off-
axis scattering configuration. A linearly polarized 15-mW 
helium-neon laser (632.8 nm wavelength) provided the 
coherent light source. This beam was split into two parallel 
beams of equal intensity by a beamsplitter. A Bragg cell was 
used to cause a 40 MHZ frequency shift on one of the beams. 
A frequency shift is used to eliminate the directional ambigui
ty, which is essential if there is flow reversal as is expected in a 

N o m e n c l a t u r e 
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closed-end cylindrical duct with two side inlets. The resulting 
pair of beams was then passed through a 120- or 250-mm 
focal-length lens. The focused beams entered the cylindrical 
duct through the transparent plexiglas wall, intersected inside 
the duct giving a probe volume with dimensions of 0.52 mm by 
0.097 mm (120 mm focal-length lens, forward scattering) or 
0.57 mm by 0.18 mm (250 mm focal-length, off-axis scatter
ing), and then passed through another side wall into the beam 
traps. The entire LDV system was mounted on a milling 
machine with four vibration isolation mounts. The light scat
tered from the seeding particles was collected by a receiving 
optical package to reflect the collected light into a 
photomultiplier. The detected signal was electrically 
downmixed to the appropriate frequency shift (2 to 10 MH2 in 
the present work). Then a counter processor with 2 ns resolu
tion was used to process the Doppler signal. The Doppler 
signal was monitored on an oscilloscope and the digital output 
of the counter processor was fed directly to a micro-computer 
for storage and analysis. The seeding particles were introduced 
into the air stream by eight atomizers symmetrically located on 
the four walls of two settling chambers. The atomizers were 
operated by filtered compressed air and salt water and pro
duced particles in the size range of 0.5-5 jtm. The salt solution 
was mixed to give a nominal 0.8 (im particle after the droplet 
dried. The seeding flow rate was 74.7 (liters/min), and the 
seeding concentration was 1 x 106 (particles/cm3). 

The configuration of the dual-inlet closed-end cyclindrical 
duct model, coordinate system and dimensions are sketched in 
Fig. 2. The model consisted of two curved rectangular inlet 
ducts (Fig. 1) and a circular chamber. 

The two rectangular inlet ducts intersect the chamber at an 
inlet angle of 60 deg. The centerlines of both inlet ducts in
tersect the chamber at the same axial station and are located 
radially at 180 deg to each other. The internal dimensions of 
the inlet ducts are 35 mmx47 mm. The upstream edge of the 
inlet ports is taken as the chamber longitudinal zero reference 
point, and, thus, the longitudinal coordinate downstream of 
the zero reference point is positive. 

The chamber model was made of a 5-mm plexiglas. It has a 
flat head plate which is adjustable, i.e., can be positioned ax-
ially from zero reference point to 200 mm forward of the inlet 
ducts. The diameter of the chamber is 100 mm and measures 
650 mm in length from the axial zero reference point to the 
exit. 

Experimental Conditions. The velocity measurements 
were made in 9 planes (R* — 6C planes) normal to the 
longitudinal axis. These data planes were located at 
X* = - 0 . 8 , -0 .6 ,0 .0 ,0 .25 ,0 .5 , 1.0, 2.5, 4.0, and 6.5, respec
tively. In each data plane the velocity measurements were 
made along two orthogonal diameter. That is, for diameter 
dc = 0 deg both axial and tangential velocity components were 
measured at 16 to 17 locations and for diameter 6C = 90 deg 
both axial and radial velocity components were measured at 10 
to 17 locations. Within a given data plane, the probe volume 
was brought as near as 3 mm to 10 mm, depending on the ex
istence of the dead zone or region masked by the inlet flanges, 
from the wall for measurements. The chamber bulk velocity 
4.15 m/s was used as a reference to normalize the experimen
tal results. This velocity corresponds to a Reynolds number 
(Ref) of 2.6x 104 indicating the flow to be turbulent. 

Theoretical Treatment 

The computations were performed by numerically solving 
the fully elliptic 3-D Navier-Stokes equations. To simplify the 
problem, the flow was considered to be isothermal, incom
pressible, and steady-state in the mean. 

The Mean Flow Equations. The time averaged equations 

for conservation of mass and momentum can be expressed in 
the tensor notation as 

dX, 
= 0 (1) 

dX, 
•(pU;Uj): 

dP 

~ax~ dX, 
{„,(- at/,- dUj 

~dX~ 
•P"i"j\ 

(2) 
Note that the turbulence correlation u,-w;- is the time-average 

UjUj and stands for the Reynolds stresses which must be 
modeled to close the above set of equations. 

The Turbulence Model. In the present calculation, the 
k — e two-equation turbulence model (Launder and Spalding, 
1974) which adopts the generalized Boussinesq eddy viscosity 
concept (Hinze, 1959) is expressed as 

•pUjUj=H, ax, - + -
dU 

BX. '-) --fv* (3) 

bulent viscosity that may be related to the kinetic energy of 
turbulence, k, and its dissipation rate, e, by dimensional 
analysis 

,i, = CILpk2/e (4) 

where C/t =0.09 (Launder and Spalding, 1974) is a constant of 
the model. The differential equations for k and e are 

dX, 

dX, 

(pUjk) = 

-(pUje)-

dX, 
(n, + H,/ok) 

dk 
-pU,Uf 

dU, 

lx~ -pe (5) 

dXt 

C, 

(Hi + H,/at)-
de 

YpUi"j' 
dU, 

~d~X~ 

3X: 

-C2pe2/k (6) 

where C, = 1.44 and C2 = 1.92 are further constants in this 
model. Furthermore, ak = l.O and ae = 1.217 are turbulent 
Prandtl numbers for k and e, respectively. Equations (3) and 
(4) can be substituted into equations (2), (5), and (6) to form a 
set of equations which have the same number of equations and 
unknowns. The system of 6 equations for 6 unknowns t/,, P, 
k, and e with prescribed laminar viscosity and density com
pletes the closure problem for the turbulent flow investigated. 

Boundary Conditions. The above set of three-dimensional 
(R* — dc — X* and V~ W— LP), elliptic partial differential equa
tions has to be solved with the following boundary conditions 
(see Figs. 1 and 2): 

(i) Symmetric planes (8C = 0 deg and 6C = 90 deg) 

(ii) 

dU _ 3V ^ dk _ de 

Central axis (Rc = 0) 

dU dk 

= 0; W=0 

dR,. dRr 

de 

~dR~. 
- = 0: V=W=0 

(iii) Exit 

dU dk Be 
= 0; V=W=0 

dXc dXc dXc 

In this study, the location of the computational downstream 
boundary was determined from the measured results or from 
the computational test. In fact, the computational test showed 
that there is no noticeable change in the flow field as long as 
the location of the exit plane was far enough to allow the flow 
to become unidirectional. 
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(iv) Inlet (Liou and Wu, 1986) 
U= measured Ujn; K= measured Vin; 
W= measured Win 
/c = measured k,„; e = e,„ = k%2/(B-\) 

where B = inlet-duct width = Dc/2 and X = 0.005 

(v) Walls 
(7 = 0; K=0; W=0 

Since the k — e model is valid only in those regions that are 
strongly turbulent, that is, in regions where the eddy diffusivi-
ty overwhelms the molecular diffusivity, it is not applicable in 
the viscous sublayer. In the other way, the steep change of 
flow properties in the wall region needs an extremely fine grid 
arrangement and makes the computational efforts unprac
tical. Therefore, in this study, the near-wall region was 
simulated by a semi-empirical two-zone model, i.e., viscous 
sublayer and fully turbulent zone, and wall-function (Launder 
and Spalding, 1974) was used to bridge the viscous sublayer. 

Numerical Scheme. The solution of the above partial dif
ferential equations along with the boundary conditions is ob
tained by using the iterative finite difference scheme based on 
the SIMPLE (Semi-Implicit Pressure-linked Equations) 
algorithm of Patankar and Spalding (1980). The partial dif
ferential equations are integrated over small discrete control 
volumes which are formed by the grid system and are con
verted to a set of nonlinear algebraic equations. A staggered 
grid system is employed. Figure 2 shows the grid arrangement 
for all scalar variables. The nodes of the velocity grid are 
located midway between the scalar grid nodes to represent the 
true convective quantities across the boundary of such control 
volumes. To formulate the total fluxes, including convective 
and diffusive terms, across the faces of the control volumes, 
the power-law scheme (Patankar, 1980) is applied. 

The solution procedure is initiated with guesses for the 
velocity and pressure fields and then proceeds with line by line 
iteration. After each sweep over the solution domain, ad
justments for the pressure field are made to satisfy the con
tinuity along each line of cells. These adjustments in turn 
destroy the compliance of the velocities and pressure fields 
with the momentum equations. Further iterations are thus 
needed until the continuity and momentum equations are 
simultaneously satisfied to the requisite degree of accuracy. 
The tolerance of the normalized mass and momentum 
residuals are typically from 0.005 to 0.001. k and e are also 
solved line by line simultaneously with the mean velocity 
distribution. To prevent numerical instability, successive 
changes of the flow variables are underrelaxed with their old 
values. The under relaxation factors are 0.5 for U, V, W, k, e, 
H,, and 0.3 for P. 

The calculations were made using a 9x 10x40 grid (Fig. 2) 
in the radial, azimuthal, and axial directions, respectively, for 
the typical case of L*d= 1.0. A large number of grid points 
were placed in the areas where steep variations in velocities 
were revealed from the previous experimental results. To en
sure the grid independence, solutions were calculated using 
different grid sizes. The tested grid sizes were 6x8x28, 
9 x 10 x 40, and 16 x 14 x 54. Less than 5 percent differences in 
the computed results were found between grid sizes of 
9x10x40 and 16x14x54. Consequently, the grid size 
9x 10x40 was chosen for L*d = 1.0 in the present work. The 
grid systems for other head heights were arranged at the same 
grid density as that for Ld=1.0. Typically, convergence re
quired 400 iterations, and the corresponding CPU time on a 
CDC-CYBER 180/840 computer system was about 3/4 hours. 

Uncertainty Estimates 

Representative values of uncertainty estimates are noted in 
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figure captions. More detailed uncertainty estimates such as 
velocity bias, refraction at cylindrical walls, and statistical er
ror associated with finite number of measurements (typically 
2000-4000) at each measuring location are included in Liou 
and Wu (1988). 

Results and Discussion 

General Flow Pattern. The general flow pattern for the 
case of L;$= 1.0 was measured and reported in detail in Liou 
and Wu (1988), and can be summarized as follows. It is found 
that the helical flows with their axis parallel to the central axis 
are mainly generated in the impinging region of the two inlet 
jets and decay rapidly toward both the head and downstream 
regions. They further degenerate into unidirectional flow at 
about four duct diameters downstream. The flow field in the 
head region is mainly composed of recirculating flows with 
their vortex axes perpendicular to the X*-R* planes. 
Moreover, the aforementioned recirculating flows in planes of 
constant azimuthal angles dc = 0 deg and 8C = 90 deg are 
counterrotating. The recirculating flows in the 0C = 9O deg 
plane (i.e., the inlet-jet plane) are driven by the upstream 
bifurcating flow of the jets impinging upon one another and 
by the shear of the inlet jets. 

The effects of the head height on the flow characteristics 
described above have been investigated both experimentally 
and computationally in the present study and will be discussed 
in the following. 

Swirl Intensity. The circumferential motion associated 
with the streamwise vortices mentioned in the previous section 
has the function of enhancing mixing and, therefore, greatly 
affects the combustion characteristics for the case of a side-
inlet combustor. It was found that the swirl intensity (SI), 
defined as the ratio of the axial flux of the swirling mean 
kinetic energy at a given X* to the flux of the total mean 
kinetic energy at the inlet, can be used to quantitatively 
characterize the circumferential motion (Hwang, 1989). 
Figure 3 depicts the swirl intensity distribution for various 
head heights. As one can see the calculated results for 
0<Ld<4 all fall into the shaded region and, therefore, the 
swirl intensity is rather insensitive to the variation of the head 
height. The weak dependence of SI on Ld is because the 
streamwise vortices are generated in the region where the two 
inlet jets impinge on one another and that the resulting swirl
ing motion is mainly confined within the range of 0<A'*<2 
with a peak intensity at A"̂  = 0.5, as shown in Fig. 3. 

Flow Patterns in the Azimuthal Planes. Figure 4(a) 
through 4(c) indicate the calculated flow patterns in the 
0C = 9O deg plane for LJ = 0.0, 1.0 and 2.0, respectively. The 
flow patterns downstream of the inlet port are found to be 
similar. The differences among the velocity vectors shown in 

0.05 -

0.03 -

0.01 -

- 0.011 1 1 1 1 1 1 1 1 1 1 1 1 
-1.0 0.0 1.0 2.0 „ 3.0 4.0 5.0 

X* 

Fig. 3 Calculated swirl intensity distribution for various head heights 
(0<L3<4) 
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Fig. 5 Calculated and measured profiles of mean axial velocities at 
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Fig. MO 

Fig. 4 Calculated flow pattern in the 0C = 9O deg for (a) LJ = 0.0, (b) LJ 
= 1.0, (c)/.J = 2.0 

Figs. 4 (a) - (c ) are less than 5 percent of frcf as X;>0 .5 . On 
the other hand, the recirculating flow pattern in the head 
region is compressed as the head height becomes smaller and 
has a triangular shape as Ld = 0. As mentioned earlier in the 
literature survey, a similar observation was also reported by 
Vanka et al. (1983). For L*d = Q (Fig. 4(a)), the upstream 
bifurcating flow of the jet-jet impingement directly impinges 
upon the head plate. Thus relatively large impinging force will 
act on the head plate as the head height reduced to zero. As L*d 

is increased to 1.0 (Fig. 4(b)), however, there exists additional 
low-speed flow region adjacent to the head plate. This low 
speed flow region behaves like a source for the flow in the 
0C = 9O deg plane since it supplies fluids from the other 
azimuthal planes. Thus instead of impinging upon the head 
plate, the aforementioned upstream bifurcating flow collides 
with part of these low speed fluids at about X* = -0 .66 (re
ferred to as reversal stagnation point in this study) and near 
the central axis. The similar behavior, but more pronounced, 
is also found for the case of L*d = 2.0, as depicted in Fig. 4(c) . 

A further comparison of Fig. 4(b) with Fig. 4(c) reveals 
that the clockwise recirculation flow patterns, located between 
the reversal stagnation point and the jet impingement stagna
tion point (X* = 0.35 for L*d studied), are quite similar for 
Ld = l.O and 2.0. Also the positions of the two stagnation 
points remain approximately invariant for Ld> 1.0, as will be 
shown later. Furthermore, the mean velocity in the low-speed 
flow region mentioned above is typically below 10 percent of 
U,d. These low speed fluids, especially those adjacent to the 
head plate, play the role of a nearly stagnant wall to the 
upstream bifurcating flow of the jet-jet impingement. All the 
above observations tend to suggest that there may also exist 
similar characteristics for the flow field upstream of the inlet 
port provided the head height is large enough to allow the ap
pearance of a reversal stagnation point in the head region. 

Comparison Between Computations and Meas
urements. Figure 5 shows the calculated and measured mean 
axial velocity profiles at various axial stations in the dc = 90 
deg plane for the case of LJ = 2.0. As one can see, the 
calculated results are in general agreement with the measured 
data. Discrepancies between calculated and measured mean 
velocity profiles decrease toward the head region and toward 
the region far downstream. For 0<A7<1.0 , a maximum 
discrepancy of less than 20 percent of t/ref is found. The large 
discrepancy in the region of 0<X*< 1.0 is partly because that 
the asymmetrical flow pattern shown by the measured data is 
not considered in the computations. 

Measured Mean Velocity and Turbulence Intensity. The 
effects of Ld on the jet-on-jet impingement flow field can also 
be characterized using the measured axial mean velocity and 
turbulence intensity profiles, as shown in Figs. 6(a) through 
6(d) . For the flow regions downstream of the inlet port 
(X*>0.5), Fig. 6(a) depicts that both the mean velocity and 
the turbulence intensity at X*= 1.0 have similar profile as Ld 

varies from 0 to 4. The jet-like mean velocity profile near the 
central axis indicates the bifurcating flow immediately 
downstream of the jet-on-jet impingement. The associated 
steep mean velocity gradient is the source of the turbulence 
generation and illustrates the high turbulence level shown in 
Fig. 6(a) where the two u' peaks corresponding to the 
steepest mean velocity gradient at R*= ±0.2 have values com
parable to U,e{. As the flow proceeds downstream, Fig. 6(b) 
shows that all the curves representing different Ld at A'* = 2.5 
tend to collapse into one curve with a variance less than 5 per
cent of t/ref. The smaller variance for the curves at A'*=2.5, 
compared with that at X* = 1.0, is partly due to the lower tur
bulence level at X* = 2.5 which is approximately half of u' at 
X*= 1.0. Also note that the peak mean axial velocity has been 
helically convected downstream from the central axis at 
X*= 1.0 to the wall region en X* = 2.5. Thus the mean velocity 
profile at X* = 2.5 is more uniform than that alX*= 1.0 and is 
still not fully developed. However, even in the developing 
state, the influence of upstream variance of Ld on the flow 
characteristics at ^ = 2.5 is already very weak. It is worth 
mentioning here that the above experimental observations 
(Figs. 6(a) and 6(b)) for the flow downstream of the inlet 
port is in general agreement with the previous observations 
based on the computational predictions (Figs. 3 and 4). 

For the flow region immediately upstream of the inlet port, 
that is, at ^ = 0.0, Fig. 6(c) shows that both the measured 
axial mean velocity and turbulence intensity profiles are very 
similar independently of Ld. This trend suggests that the bifur
cating flow immediately upstream of the jet-jet impingement 
is mainly controlled by the inlet jet and not by the head height. 
At X*= - 0 . 6 (Fig. 6(d)), that is, in the head region, the axial 
mean velocity is positive near the wall and negative around the 
centerline for the case of Ld= 1.0, whereas this trend is com
pletely reversed for the case of Ld = 2.0 and 4.0. In addition, 
the corresponding turbulence intensity shown in Fig. 6(d) 
monotonically decreases with increased Ld. Thus both the 
measured axial mean velocity and turbulence intensity in the 
head region display nonsimilar profiles to the variation of Ld 

under the coordinate X* which is normalized by the head 
height for Xc<0 (Fig. 2) such that the coordinate at the head 
plate is always - 1.0 irrespective of L*d. However, as discussed 
previously, the measured results at ^ ' = 0 suggest that the 
bifurcating flow immediately upstream of the jet-jet impinge
ment is majorly controlled by the inlet jets. Hence, the 
physical distance between any cross-section plane in the head 
region and the plane passing through the upstream edge of the 
inlet port (Xc = 0) would be an important length scale to 
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Fig. 6 Measured axial mean velocity and turbulence Intensity profiles 
for various Ld at (a) X* = 1.0, (b) X*=2.5 , (c) XJ=0.0, (d) X* = - 0 .6 
(Uncertainty in U/Urel: less than ±2.5 percent, in u'/Urel: less than ±3.1 
percent, in BJ: less than ±0.6 percent) 

characterize the flow field in the head region. Figure 7 is a plot 
of the measured centerline mean velocity and turbulence inten
sity versus the new coordinate X* =Xc/(Dc/2) for various L*,. 
As one can see, rather similar profiles are found for both 
U/Urc[ and u'/UK( as Ld> 1.0. The variance is less than 10 
and 5 percent of Uref for the U/Unf and u'/UTc! curves, 
respectively. It is also worthwhile to note that both U/Urel and 
u'/t/ref almost vanish, that is, the fluid is nearly stagnant, be
tween the head plate and X* = - 1.0 as Ld > 1.0. This fact sug
gests that the position of the head plate is effectively moved to 
A"*=-1.0asZ4>1.0. 

Stagnation Points. The feature of similar flow patterns in 
the head region for Ld> 1.0 can be further interpreted by stu
dying the positions of aforementioned two stagnation points 
as a function of Ld. Figure 8 is such a plot. The dotted line 
represents the position of the head height which, strictly 
speaking, is another stagnation point according to the no-slip 
condition. Several observations can be made from Fig. 8. 
First, topologically, the existence of the two stagnation points 
as shown by the solid squares and circles delimits three flow 
region according to the flow direction along the centerline. Se
cond, the experimentally measured and numerically computed 
positions of the two stagnation points are in good agreement. 
Third, the impingement stagnation point is found to be 
relatively insensitive to the changes in the head height. This is 
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a further justification of the previously made statement, that 
is, the flow field near the jet-jet impingement is mainly af
fected by the jet itself. In fact, a simple geometrical relation 
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can be proposed for predicting the impingement stagnation 
point if one considers the two inlet jets impinge on each other 
in a straight manner. The derivation is done in the Appendix 
and the expression obtained is 

Xf= cot0 (7) 

In this work, the inlet flow angle d is 60 deg which gives 
X*= 0.577. This estimated value is lower than both measured 
and computed ones. The reason is due to the existence of a 
separation bubble near ^ ' = 0.0 in the curved inlet duct (Liou 
and Wu, 1986) which pushes the inlet jet toward the 
downstream edge (A^ = 0.5) of the inlet port. The jet impinge
ment point is therefore shifted downstream. To account for 
this shift, expression (7) can be modified as 

Xf=coiO + 0.2 (V) 
since the separation bubble has a thickness of 1.0 Dc. The 
modified expression gives A'*= 0.777 which is between the 
calculated and the measured values. Fourth, Fig. 8 shows that 
the reversed stagnation point will occur if Ld is increased 
beyond 1.0. In addition, once the reversed stagnation point 
appears its position will remain invariant for L*d>\.Q. This 
feature further implies that the distance between the jet im
pingement stagnation and the reversal stagnation point will re
main constant and, therefore, the recirculating zone (Fig. 4) 
between these two stagnation points will approximately have 
the same size for Ld>l.0. This fact reinforces the observa
tions made previously in Figs. 4 and 7 and the similarity of the 
flow field with respect to L*d is further justified. Furthermore, 
as has been done for the location of the jet impingement point, 
one may also estimate the location of the reversed stagnation 
point from the geometrical consideration. The derivation is 
given in the Appendix and is based on the assumption that the 
vortex located between the two stagnation points can be most 
easily driven by the inlet jet if it forms a smooth circle. The 
deduced expression is 

A7=-(l+tan(0/2))/2 (8) 
which gives a value of -0.789 for 9 = 60 deg. This value lies 
between the computed and measured results, as shown in Fig. 
8. Moreover, equation (8) tells us that the reversal stagnation 
point will appear and the flow pattern in the head region will 
become similar if L*d> (1 + tan(0/2))/2. 

Mass Flow Rate Transported Into the Head Region. Since 
the fraction of the inlet mass flow rate which is transported in
to the head region (mri/min) may have an important effect on 
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Fig. 9 Numerically computed fraction of inlet mass flow rate 
transported Into the head region as a function of head height 
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Fig. 10 Numerically predicted and geometrically estimated positions 
of (rh„7rh/n)max versus inlet angle 

the fluid mixing and the flame stability inside a combustor 
(Shahaf, 1980; Kennedy, 1974), three-dimensional numerical 
calculations of mri/fnin as a function of nondimensionalized 
head height were performed, and the results are shown in Fig. 
9 (solid line). Note that the results obtained from the axisym-
metric and the two-dimensional computations (Hwang, 1989) 
are also included in Fig. 9 for comparison purpose. As one can 
see, for each case in Fig. 9 as the head height is increased from 
0, mri/mm first increases to a peak value, subsequently 
decreases, and then remains approximately constant. The in
itial increase of mrj/min is because that the size of head region 
is increased as the head height increases. The nearly constant 
mri/min for large Ld is because that a further increase of L*d 
from a certain large L*d is actually increasing the amount of 
stagnant fluids between the recirculation zone and the head 
plate and not increasing mri. The presence of a peak inri/m,n is 
due to the fact that only for a certain optimal head height 
(denoted as L*do) the head vortex tends to form a smooth circle 
which can be most easily driven by the inlet jet. Thus Ldo cor
relates with the geometrical shape of the head vortex and 
therefore can be estimated by equation (8). Figure 10 is a plot 
of 6 dependence of numerically predicted Ldo for the three 
cases of Fig. 9 together with geometrically deduced equation 
(8). It is seen that both methods predict the same trend, that is, 
the optimal head height increases with increasing inlet angle. 
The discrepancy between the Ldo predicted by the two 
methods is less than 5 percent. 

There are several more aspects of Fig. 9 that are worthy of 
discussion. The existence of an optimal head height for the 
maximum mrj/min shown by the present cold-flow study 
parallels the existence of an optimal head height for the best 
flame blowoff performance found experimentally by 
Choudhury (1982) and for the best combustion efficiency 
predicted computationally by Vanka et al. (1985), respective
ly. This observation suggests the presence of correlations 
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among the mri/min, the flame stability, and the combustion 
efficiency. As shown in Fig. 9, the difference between the peak 
mri/min at Ldo and the constant mri/min at large LJ is quite 
modest for the three-dimensional case, compared with those 
for the two-dimensional and the axisymmetric cases. The 
reason is that, in addition to flow upstream and downstream 
in the two-dimensional and the axisymmetric cases, the inlet 
jets can flow in two opposite azimuthal directions for the 
three-dimensional case. Furthermore, the modest difference 
between mri/mjn at Ld0 and at large Ld is consistent with that 
found for the reactng flow investigated by Vanka et al. (1985) 
in a similar combustor configuration with the same number of 
side inlets, although the azimuthal angle between the two side 
inlets is different between the two works. The calculations of 
Vanka et al. showed that Ldo = 0.16 offers the best combus
tion efficiency compared with Ld = 0., 0.34, and 1.52 and that 
the combustion efficiency for L*d= 1.52 is slightly lower than 
that for Ld0. 

Summary and Conclusions 

The paper presents the results of an investigation of the 
head-height effects on the three-dimensional jet-jet impinge
ment flow in a closed-end cylindrical duct. Reasonable agree
ment between LDV measured and analytically computed mean 
velocity profiles has been obtained. The presented swirl inten
sity, mean velocity, and turbulence intensity profiles, posi
tions of both the jet impingement and the reversal stagnation 
points, and mri/min all tend to suggest that the flow field 
downstream of the inlet ports is insensitive to the variation of 
the head height and that the flow field flow in the head region 
is similar for Ld>l,0 provided an appropriate axial coor
dinate is used. 

The geometrical expressions deduced from considering the 
straight collision of two inlet jets and the shape of the recir
culating flow in the head region provide a simple convenient 
way to effectively estimate the locations of both the jet im
pingement and the reversal stagnation points and the optimal 
head height for the maximum mri/min. In addition to aid 
useful illustrations to the flow feature in the head region, these 
geometrical expressions provide a criterion to the appearance 
of the reversal stagnation point which implies similar flow pat
terns in the head region irrespective of the head height. 

Furthermore, the effect of the head height on mrj/inin 
presented in this cold-flow study is found to parallel the effect 
of the head height on the combustion efficiency and on the 
flame stability investigated by the previous researchers for the 
reacting flows in the similar geometrical configurations. Con
sequently, the presented results and discussion in the present 
work will aid in understanding the combustion performance 
of the corresponding reacting flow from the fluid dynamical 
point of view. 

Acknowledgment 

Support for this work was partially provided by the Na
tional Science Council of the Republic of China under con
tract NSC-74-0401-E007-11. 

References 

Choudhury, P. R., 1982, "Characterization of a Side Dump Gas Generator 
Ramjet," A1AA Paper 82-1258. 

Hwang, Y. H., 1989, "Theoretical Analysis of Flow Fields and Combustion 
Performances in Side-Inlet Dump Combustors," Ph.D. thesis, Dept. of Power 
Mechanical Engineering, National Tsing Hua University, Hsin-Chu, Taiwan. 

Kennedy, J. B., 1974, "Ramburner Flow Visualization Studies," Proceedings 
of 11th JANNAFCombustion Meeting, Vol. II, Publication 261, Chemical Pro
pulsion Information Agency, pp. 415-440. 

Launder, B. E., and Spalding, D. B., 1974, "The Numerical Computation of 
Turbulent Flows," Computer Methods in Applied Mechanics and Engineering, 
Vol. 3, pp. 269-289. 

Lighthill, J., 1975, "Mathematical Biofluiddynamics," Published by S1AM. 
Liou, T. M., and Wu, S. M., 1986, "Application of Laser Velocimetry to the 

Curved Inlet Duct of a Side Dump Combustor," Third International Sym
posium on Application of Laser-Doppler Anemometry to Fluid Mechanics, 
Ladon-Instituto Superior Tecnico, pp. 9.3.1-9.3.6. 

Liou, T. M„ and Wu, S. M., 1988, "Flow Field in a Dual-Inlet Side-Dump 
Combustor," Journal of Propulsion and Power, Vol. 4, No. 1, pp. 53-60. 

Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere 
Publishing Co., New York. 

Shahaf, M., Goldman, Y., and Greenberg, J. B., 1980, "An Investigation of 
Impinging Jets in Flow with Sudden Expansion," Proceedings of the 22nd Israel 
Annual Conference on A viation and Astronautics, Israel Ministry of Transport, 
pp. 100-106. 

Stull, F. D„ Craig, R. R., Wtreby, G. D„ and Vanka, S. P., 1985, 
"Investigation of Dual Inlet Side Dump Combustor Using Liquid Injection," 
Journal of Propulsion and Power, Vol. 1, No. 1, pp. 83-86. 

Vanka, S. P., Craig, R. R., and Stull, F. D., 1985, "Mixing, Chemical Reac
tion and Flow Field Development in Ducted Rockets," AIAA paper 85-1271. 

Vanka, S. P., Stull, F. D., and Craig, R. R., 1983, "Analytical Characteriza
tion of Flow Field in Side Inlet Dump Combustor," AIAA paper 83-1399. 

A P P E N D I X 

As shown in the following figure, the locations of stagna
tion points can be derived as: 

X-, = (Dc/2)cotd and X, = - (Dc/2)(\/2 + tan(0/2)/2) 
therefore 

Xf=cot6 (Al) 
and 

A-*f=-(l+tan(0/2))/2 (A2) 
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Impingement of Under-Expanded 
Jets on a Flat Plate 
When an under-expanded sonic jet impinges on a perpendicular flat plate, a shock 
wave forms just in front of the plate and some interesting phenomena can occur in 
the flow field between the shock and the plate. In this paper, experimental and 
numerical results on the flow pattern of this impinging jet are presented. In the 
experiments the flow field was visualized using shadow-photography and Mach-
Zehnder interferometry. In the numerical calculations, the two-step Lax- Wendroff 
scheme was applied, assuming in viscid, axially symmetric flow. Some of the pressure 
distributions on the plate show that the maximum pressure does not occur at the 
center of the plate and that a region of reversed flow exists near the center of the 
plate. 

1 Introduction 
It is well known that when air is expanded through a con

vergent nozzle into the atmosphere, with its stagnation pressure 
higher than the critical pressure (p0> ( ( K + 1 ) / 2 «/<*-!) Pa, 
where p0 is the stagnation pressure of the air jet, pa the at
mospheric pressure, and K the ratio of specific heats), an under-
expanded sonic jet is obtained. Such a jet can be found in 
many industrial applications, for example, downstream of the 
throat or the valve in a duct or a pipe involving high pressure 
gases, in the exhausts from rocket engines and from certain 
aircraft engines, and so on. The study of the structure of this 
type of jet has been conducted for many years by many re
searchers (Donaldson and Snedeker, 1971; Sinha et al., 1971; 
and Chang and Chow, 1974). But the explanation on the mech
anism of the occurrence of Mach disk in the jet has not been 
satisfactorily given yet and the problems on the interaction of 
the acoustic wave with the jet have not been fully solved. The 
topic is still under investigation. 

When solid objects such as wedges, flat plates, cavities etc. 
are placed downstream of the under-expanded jets, some in
teresting phenomena can occur, as shown by Lamont and Hunt 
(1976), Kalghatgi (1975) and Iwamoto (1986). The Hartmann 
whistle and Hartmann-Sprenger tube have been studied by 
some researchers (Iwamoto, 1986), but the mechanism of the 
self-excited oscillation of flow in the tube has not been well 
established. 

It is known that, under certain conditions, when the un-
derexpanded jet impinges upon a flat plate, the flow in the 
neighborhood of the plate is excited into an oscillation (Moerch, 
1964). In this paper, however, the steady flow pattern is ex
amined using the experimental and numerical results when the 
jet with relatively low degree of underexpansion impinges on 
a flat plate, because even in steady flow some interesting phe-

Coniributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting. San Francisco, Calif., December 10-15, 1989 of THE AMERICAN-
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids Engi
neering Division July 1989. Paper No. 89-WA/FE-2. 

nomena are involved. And it is hoped that the present results 
will form the basis for the analysis of the oscillatory flow in 
the neighborhood of the plate. 

2 Experimental Apparatus 
The apparatus used in the experiment is shown schematically 

in Fig. 1. Dry air was supplied to the plenum chamber in the 
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trally placed. The distances between the taps were 15mm. Plate
pressures were measured by traversing the plate.

The flow in the space between the nozzle and the plate was
visualized by shadow-photography. The light from the light
source becomes parallel after passing through the convex lens
and goes through the flow field of interest. In order to take
shadowgraph pictures of the flow field, the camera was focused
on a position approximately 50mm from the lens measured
from the axis of symmetry of the jet. The Mach-Zehnder in
terferometry was also used to obtain the density distributions
of the flow field.
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Fig. 3 Positions of the shock waves at the jet boundary (PoIP. = 3.0)

Fig. 2(a) Shadowgraph picture for free jet (Po/P. = 3.0)

Fig.2(b) Shadowgraph picture for Impinging jet (Po/P. = 3.0, lid = 1.5)

side of which a convergent nozzle was fitted. The throat di
ameter (d) of the convergent nozzle was lOmm and the internal
surface of the nozzle was well finished. The diameter of the
nozzle plate was 170mm. The nozzle-to-plate distance (1) was
easily adjusted with the feed screw mechanisms.

The impingement plate, 160mm in diameter, was mounted
on the cross-slide and could, therefore, be traversed in a plane
parallel to the nozzle exit plane. The plate had five pressure
taps (0.3mm in diameter) along its diameter with the one cen-

3 Experimental Results
Figure 2 shows the shadowgraph pictures of a free jet and

a jet impinging on a plate for the nozzle pressure ratio poipu
= 3.0. In the free jet shown in Fig. 2(a) Mach disk is not
formed since the degree of underexpansion of the jet is not
high enough. The cellular structure of the jet is apparent.

Figure 2(b) shows the shadowgraph picture of a jet when a
plate is located normally to it at a distance of 15mm (lid =
1.5) measured from the nozzle exit plane. The bow shock can
be seen in front of the plate. The flow pattern upstream of
the bow shock is similar to that of the free jet.

Figure 3 is a plot of shock wave locations in the jet against
the varying nozzle-to-plate distances, which are measured on
the shadowgraph pictures. The locations of the shocks at the

---- Nomenclature

c speed of sound
d nozzle exit diameter
e total energy per unit

volume of gas
F (see equation (I»
G (see equation (I»

/ nozzle-to-plate dis
tance

/' distance between
nozzle exit plane and
the position of shock
at the jet boundary

/, ,{2' .. = distance between

180/ Vol. 112, JUNE 1990

nozzle exit plane and
the position of shock W (see equation (1»
at the jet boundary x axial coordinate
in the free jet t,.r radial increment

p pressure t,.! time increment
r radial coordinate CJ.x axial increment
! time K ratio of specific

T temperature heats
/( velocity component p density

in x-direction
U (see equation (I» Subscripts

v = velocity component 0 stagnation state
in r-direction a atmospheric state
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Fig. 4 Interferogram (pjp, = 3.0, l/d = 2.0) 
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Fig. 5(a) Density distributions (p0lp, = 3.0, l/d = 2.5) 
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Fig. 5(D) Density distributions (pjp, = 3.0, l/d = 2.0) 

jet boundary in the free jet are indicated by /,, /2, etc., in the 
same figure. When the nozzle-to-plate distance l/d is less than 
1.5, a single shock stands in front of the plate (see Fig. 2(b)) 
and the distance between the plate and the shock (1-1') is 
almost independent of the nozzle-to-plate distance. When the 
plate is moved further from the nozzle (l/d > 1.5), the shock 
moves together with the plate. When its position coincides with 
that in the free jet (/' = /,), it remains at this position and, 
downstream of it another shock appears (2.0 < l/d < 3.0), 
the distance between this shock and the plate being almost 
constant. The shock wave located closer to the plate is almost 
normal or slightly bow-shaped. 

In order to obtain the flow field of the impinging jet in 
detail, the interferograms were taken using Mach-Zehnder in-
terferometry. Density distributions were thus obtained. Figure 
4 is an example of the interferogram for p0/pa = 3.0, l/d = 
2.0. Figures 5(a) and 5(b) show the density distributions ob
tained from the interferograms for l/d = 2.5 and 2.0, re
spectively. Density distributions in only one half of the flow 
field are shown in Figs. 5(a) and 5(b), because the flow is 
assumed to be axially symmetric. 

Figure 5(a) shows that the density decrease from the high 
value at the nozzle exit plane to its minimum at x/d = 0.6 
(for notation, see Fig. 1) and, due to the occurrence of the 
oblique shock waves crossing on the axis, the maximum density 
is obtained at x/d = 1.3 downstream of the position of min
imum density. As shown in Fig. 3 the oblique shock wave 
reaches the jet boundary at l'/d = 1.3 ( = lx/d) and the ex
pansion wave is reflected. So, the density becomes on the axis 
near x/d = 1.9. The strong shock wave is located in front of 
the plate at x/d = 2.1 and, downstream of this location, density 
decreases slightly towards the plate. Qualitatively the same 
thing can be said of the density distributions for l/d = 2.0 in 
Fig. 5(b) except that the shock stands at x/d = 1.6. 

4 Numerical Results 
In order to obtain the flow properties in the impinging flow 

field in further detail, the numerical method known as two-
step Lax-Wendroff scheme (Sinha et al., 1971 and Aki, 1970) 
was applied assuming inviscid, axially symmetric flow. The 
governing equations are, 

where 

U= 

G = 

U, + Fx+Gr+W=0 (1) 

p 
pu 
pv 
e 

pv 
puv 
ptZ+p 
v(e + p) 

F= 

W= 

pu 
pu2+p 
puv 

_u(e+p)_ 

pv/r 
puv/r 
pt//r 

_ v(e+p)/r 

where r is the radial coordinate, p the density and, u and v 
are the velocity components for x and r directions, respectively. 
The total energy per unit volume of the gas(e) is expressed by, 

/ T «2 + t A 

<=' ( r r + — ) 
where Tis the temperature. Equation (1) was solved numer
ically using a two-step Lax-Wendroff scheme as follows; 

Uip)(x,r,t + At/2)=U(x,r,t)- — [Fx(x,r,t)Gr(x,r,t) + W\ 

(2) 
U(x,r,t + At) = U(x,r,t) - At[Fx

(J,)(x,r,t + At/2) 

+ G^ 'OcV + A//2) + Wfp)(x,r,t + At/2)] 

where At is the time step, and the superscript (p) denotes the 
provisional values and ( ) the average value, which are given 
by, 

F v
w = /v t(t/p>), G r

w = Gr(L*") 

U(x,r,t) = - [U(x+ Ax,r,t)+ U(x-Ax,r,t) 

+ U(x,r+Ar,t) + U(x,r-Ar,t)] 

where Ax and Ar are the increments in x and r directions, 
respectively. The artificial viscosity terms were introduced in 
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Fig. 6(a) Comparison between density distributions obtained experi
mentally and numerically (p,>/p, = 3.0, lid = 2.5) 
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Fig. 7 Calculated pressure distributions for po/p, = 3.0 and lid = 2.5 
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Fig. 6(b) Comparison between pressure distributions obtained exper
imentally and numerically (po/p, = 3.0) 

the equations to enhance the stability properties of the nu
merical calculation, and so it is difficult to locate the shock 
wave accurately by numerical results. 

The reflective boundary was employed at the flat plate and 
the axis symmetry, and the continuous boundary elsewhere 
except at the nozzle exit plane. It is known that the sonic line 
does not coincide with the nozzle exit plane and the flow 
velocity on the nozzle exit plane is subsonic near the axis of 
symmetry and supersonic near the nozzle wall. Therefore, the 
flow properties in the neighborhood of the nozzle exit were 
obtained using Hall's theory (1964), and these flow properties 
were given at the nozzle exit plane as boundary conditions. 

5 Comparison Between Experimental and Numerical 
Results and Discussions 

Figure 6 shows the comparison between the experimental 
and numerical results for p0/pa = 3.0. Figure 6(a) shows the 
density distributions along the axis of symmetry obtained from 
the interferograms and along the line 0.5mm away from the 
axis of symmetry obtained from the numerical calculation for 
l/d = 2.5. Figure 6(b) shows the pressure distributions on the 
flat plate obtained from the pressure measurements and on 
the plane 0.5mm upstream of the plate obtained from the 
numerical calculation for l/d = 2.0 and 2.5. Since the nu
merical calculations give the flow variables at the center of 
each cell into which the flow field is divided and since the 
surfaces of the plate and the axis of symmetry coincide with 
the cell boundaries, the nearest position where the solutions 
are found is one half the length of the cell side away from the 
boundary. 

The experimental and numerical results are relatively in good 
agreement. As can be seen in Fig. 6(a), the numerical results 

0.5 1.0 1.5 

RADIAL OISTANCE r / d 

Fig. 8(a) Calculated pressure distributions on the plate for p„/pa = 4.0 
and lid = 3.0 

0.5 1.0 1.5 

RADIAL OISTANCE r / d 

Fig. 8(b) Calculated velocity distributions on the plate for pjp, = 4.0 
and lid = 3.0 

show that the density along the axis of symmetry of the jet 
drops from the value at nozzle exit plane to its minimum value 
at x/d = 0.9 and reaches its maximum at x/d = 1.3 in the 
area downstream of the oblique shock wave. The density de
creases again and reaches its minimum at x/d =1.8 upstream 
of the shock (x/d = 2.1) standing in front of the flat plate. 
Downstream of the shock at x/d = 2.1 the experimental curve 
shows the decrease towards the plate, while numerical results 
show the monotonic increase toward the plate. 

Figure 7 shows pressure distribution of the entire flow field 
in the space between the nozzle and the plate obtained nu
merically for Po/Pa =3.0 and l/d = 2.5. The jet expands from 
the high pressure at the nozzle exit plane to the lowest pressure 
at the position where the oblique shock waves cross on the jet 
axis. And then through the oblique shocks there is pressure 
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Fig. 9(a) Calculated pressure distributions for p^/p, = 6.0 and l/d 
3.0 
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Fig. 9(b) Calculated velocity distributions on the plate for p^lp, = 6.0 
and l/d = 3.0 

increase, which is followed by the decrease in pressure due to 
the expansion waves reflected from the jet boundary as a result 
of the interaction of the oblique shocks with the jet boundary. 
Then the pressure increases again across the shock wave just 
in front of the plate. 

In Fig. 6(b) the maximum pressure on the plate for l/d = 
2.0 is at the center of the plate and downstream of r/d = 1.0 
there are slight variations of pressure. In contrast, the curve 
for l/d = 2.5 shows that the maximum pressure does not occur 
at the center of the plate but at a certain distance away from 
the center. In Fig. 8(a) which shows the pressure distribution 
calculated numerically for Po/pa = 4.0 and l/d = 3 . 0 even 
larger decrease in pressure at the center is noticed. 

For the uniform supersonic jet issueing from the Laval noz
zle, Kalghatgi and Hunt (1976) found that lower pressure can 
be obtained near the axis of symmetry on the flat plate. They 
showed that the decrease in the pressure in the central area of 
the plate was due to the occurrence of a shear layer along the 
slip surface in the impinging jet. The shear layer originated at 
the point of interaction (triple point) of the shock in front of 
the plate with the weak shocks which were produced by small 
imperfections in the nozzle wall or by slight inaccuracies in 
the design/production of the nozzle contour. The stagnation 
pressure of the fluid which goes through the oblique shock of 
smaller shock wave angle is higher and this higher stagnation 
pressure is obtained in the outer layer of the jet. The same can 
be said of the density. Therefore, it is possible that the outer 
fluid with high stagnation pressure reverses towards the center 
on the plate. The existence of the region of this reversed flow 
has been confirmed by observing the flow direction with the 
Pitot probe when the jet impinges upon a flat plate through 
the Laval nozzle (Gubanova et al., 1973). Since in the present 
study the nozzle-to-plate distance is larger than that in the 
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Fig. 9(c) Calculated velocity distributions along the axis of symmetry 
for palp, = 6.0 and l/d - * " 3.0 
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Fig. 9(d) Calculated velocity vectors In the flow field near the axis of 
symmetry and the plate for pa/p, = 6.0 and l/d = 3.0 

study by Kalghatgi and Hunt (1976), their theory can not 
wholly by applied to our flow field. However, the stagnation 
pressure in the outer flow behind the shock may be higher than 
that in the central flow on the flat plate, so that there can be 
inward flow radially, towards the center of the plate. 

In Fig. 8(b) the distributions of the velocity are shown. These 
were obtained from the numerical calculation for p0/pa = 4.0 
and l/d = 3.0. As can be seen in the figure, both u and v are 
negative near the axis of symmetry, which indicates that the 
flow is reversed in the central region on the plate. 

This phenomenon can occur more conspicuously when the 
nozzle pressure ratio is higher. Figure 9(a) shows the pressure 
distribution in the whole flow field between the nozzle and the 
plate obtained numerically for p0/pa = 6.0 and l/d = 3.0. As 
can be seen in the figure, the maximum pressure is not at the 
center on the plate. Figure 9(b) and 9(c) show the corresponding 
distributions of the velocity components. As seen in these fig
ures, in the region of the flow field between x/d = 2.2 and 
3.0 along the axis of symmetry and between r/d = 0 and r/ 
d = 0.7, the flow is reversed. Figure 9(d) shows the velocity 
vectors of the flow in the field near the axis of symmetry and 
the plate. 

6 Conclusions 
The flow pattern in the flow field of the impinging jet upon 

a perpendicular flat plate is examined using experimental and 
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numerical results. The numerical results, obtained using two-
step Lax-Wendroff scheme under the assumption of inviscid, 
axially-symmetric flow, are found to be in good agreement 
with the experimental results. The numerical results show that, 
under certain conditions, the maximum density or pressure on 
the flat plate does not occur at the center and that there is a 
region of reversed flow near the central area on the plate. 

Experimental Uncertainty 
The maximum uncertainty in the measured density obtained 

from the interferogram is about 4 percent of the maximum 
density on the plate which occurs at the jet axis on the plate 
in Figs. 5 and 6(a). The maximum uncertainty in measured 
values of the shock wave locations in Fig. 3 is less than 2.5 
percent of the maximum nozzle-to-plate distance. The pressure 
data in Fig. 6(b) have a maximum uncertainty of about 1.5 
percent of the stagnation pressure of the jet. 
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Viscous Damping of Stationary 
Wave Formed Near an Obstacle in 
a Channel 
The purpose of this study is to investigate surface wave damping due to viscosity. 
The stationary wave formed near an obstacle in a horizontal channel is chosen as 
the subject of this analysis because gravitational and surface tension waves appear 
separately before and behind the obstacle, and, hence, the effect of viscosity on two 
typical kinds of waves can be analyzed. The linearized differential equation for the 
stream function is solved analytically to obtain the waveform. The calculated damp
ing rate of wave amplitude does not agree well with that of Stokes' approximate 
estimation. This shows that the Stokes' estimation is not sufficient, and that an 
exact analysis as presented here is necessary when the Reynolds number is as low 
as Re< 1000. As an application of this analysis, the waveform is calculated for the 

stationary wave formed by an obstacle in falling liquid film flow. 

1 Introduction 
The effect of the viscosity on a surface wave motion is an 

important topic in industry, for example, in dealing with the 
range which is under the influence of wave motion or the 
damping of wave power. However, only a few reports have 
provided an exact analysis of wave damping due to viscosity, 
and no report has considered systematically the surface tension 
and gravitational force on viscous damping (Hunt, 1964; Keu-
legan, 1948; Lamb, 1932; and Leblond and Mainardi, 1987). 
In an old example, Stokes calculated the wave damping rate 
using a solution for a potential flow (Lighthill, 1978a). He 
noticed that the solution of the stream function for the non-
viscous Laplace equation could also satisfy the exact equation 
with viscous terms except for boundary conditions. Stokes 
considered that the effect of viscosity may be estimated by the 
discrepancy of the boundary conditions when the approximate 
nonviscous stream function was applied to the exact equation. 
Under these hypotheses, the damping rate of the wave energy 
by the bottom friction and the internal friction was calculated 
separately. This analysis, however, is not exact, although the 
calculation reflects a creative approach. 

The purpose of the present study is to analyze exactly the 
viscous damping of the surface wave motion. In order to clarify 
the effect of surface tension and gravitational force on the 
viscous damping, we investigate the damping rate of the wave 
amplitude for various Reynolds, Weber, and Froude numbers. 
The stationary wave near an obstacle in a horizontal channel 
is chosen as the subject of the analysis. The wave is generated 
by a disturbance, that is, an abrupt pressure increase caused 
by the obstacle. It is known that two kinds of stationary waves, 
namely, the surface tension and the gravitational waves, are 
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formed before and behind the obstacle (Lighthill, 1978b). This 
flow system makes the analysis simpler and efficient because 
the phenomena are steady and the viscous effect on the two 
typical kinds of waves mentioned above can be investigated 
simultaneously. 

In this report, we first obtain both viscous and nonviscous 
solutions for the stationary wave in a horizontal channel. The 
viscous effect on wavelength and amplitude is considered. Vis
cous damping rates are calculated for both surface tension and 
gravitational waves, and both results are discussed. Based on 
these results, the physical mechanism of viscous action on both 
kinds of waves is considered. Next, a stationary wave near an 
obstacle such as a step in a falling liquid film flow (Fujita et 
al., 1986) is analyzed as an application of the above theory. 

2 Analysis of Stationary Wave Formed in Horizontal 
Channel Flow 

2.1 Basic Equations and Boundary Conditions. It is consid
ered that the stationary waves appearing before and behind 
the obstacle are formed due to an abrupt pressure increase 
caused by an obstacle. Although the wave propagation veloc
ities are equal to the stream velocity, a surface tension and a 
gravitational wave appear before and behind the obstacle, re
spectively, because of the difference in their group velocities 
(Lighthill, 1978b). 

Forbes (1983) analyzed the stationary wave generated in a 
horizontal flow where a cylindrical obstacle was settled on the 
bottom surface under an assumption of potential flow. Al
though analysis of each flow with an obstacle of a definite 
shape seems useful from a practical viewpoint, it is quite dif
ficult because of the complicated boundary conditions. Since 
our aim is only to clarify the effect of the fluid viscosity on 
the wave motion, a simple flow system was chosen as the 
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Fig. 1 Coordinate system 

subject of analysis as shown in Fig. 1, where a stationary wave 
is generated by a pressure increase which is described by a step 
function within a certain region in a channel. Therefore, the 
obstacle effects are represented solely by the pressure increase 
in this report. As shown in Fig. 1, the x an y indicate the flow 
direction and the vertical direction to the bottom wall, re
spectively. 

Viscous Flow Model. The nondimensional Navier-Stokes 
equations for the two-dimensional flow and steady-state con
dition can be written as follows. 

Ju 
u— + 

dx 

dx 

dp j _ /^w <ftA 

~ dx + Re W + dy2) 

y ~ dy + FT + Re W + dy2) 

(1) 

(2) 

x - y ~ , u - v — p 
x = -,y = - , u = l + - , v = -d,P = ^ r i (3) 

where His the liquid depth, u and v are the x andy components 
of the fluctuation velocity caused by the pressure disturbance, 
P is the pressure and p is the liquid density. U is the mean 
stream velocity. Because the wavelength is not so long com
pared with the liquid depth, the waves in this study can be 
considered a deep-sea wave. In which case the stream velocity 
can be assumed to be uniform in the cross section of flow 
because the effect of the bottom friction may be ignored. It 
is necessary, however, to take into account the velocity dis
tribution when the liquid depth is exceedingly shallow, a case 
which will be discussed in section 4. 

In equations (1) and (2), Re and Fr denote the Reynolds and 
Froude numbers which are defined as 

Re = 

Fr = 

UH 
v 

Ml 

(4) 

(5) 

where v is the kinematic viscosity and g is the gravitational 
acceleration. _ 

If the stream function for the fluctuation tya is defined by 

the following equation (6) for each wave number component 
a non-dimensionalized by the liquid depth H, the fluctuation 
velocity components ft and v can be written as equation (7). 

*« = **(7)e's* (6) 

U 
= W . e>< 

v = — = -ia <pae
ia (7) 

where / is the imaginary unit and a prime indicates the dif
ferentiation with respect toy. An equation without the pressure 
term can be obtained by combining equations (1) and (2). 
Inserting equation (7) into this equation, the following 
linearised differential equation (8) can be obtained^ for the 
stream function of each wave number component \!/a by ig
noring the quadratic terms of the fluctuation. 

ta"" - (2a2 + iaRe)^a" + (a4 + m3Re)^ a = 0 (8) 

As for the boundary conditions, at the wall (y = 0), 

j , a = 0 (9) 

*« ' = 0 (10) 

since the velocities are zero there. At the liquid surface (y = 
1) the force balance in the ^-direction can be written as 

\_(Fh_ _2_3y 

We dx2 + Re dy 

+ A P | S ( x + l ) - S ( x - l ) ) (11) 

where Pa is the atmospheric pressure and We is the Weber 
number defined by 

P — P = — 
Fr 

We = 
pU2H 

(12) 

where a is the surface tension. h(x) in equation (11) denotes 
the liquid surface profile, and can be written as follows by 
integrating each wave number component of the amplitude 
*(a) . 

h(x) = *(a) e'aXda (13) 

On the right-hand side of equation (11) the 4th term shows 
the pressure increase caused by the disturbance, where AP is 
the nondimensional magnitude of the pressure increase and 
S(x) is an unit step function. The pressure increase is dis
tributed between x = - H and H ( - 1 < x < \) like a step func
tion on both sides of x=0 as shown in Fig. 1. Differentiation 
of equation (11) with respect to x gives 

dP 
dx r.(i 

1 _ - _ ia3- _ 
- ia * (a ) + 7^-*(a) 

Fr We 

2H2^ 
Re 

ta' e"*xda + AP{8(x+ I)-8Qc- l)j (14) 

Nomenclature 

Fr = Froude number 
(= U2/gH) 

g = gravitational acceleration 
H = liquid depth 

h(x) = liquid surface profile 
/ = imaginary unit 

P = pressure 
Pa = atmospheric pressure 
Re = Reynolds number 

(= UH/v) 

U = liquid velocity 
u and v = x and y velocity compo

nents 
We = Weber number 

(= pU2H/a) 
x and y = orthogonal coordinates 

(defined as Fig. 1) 
a = wave number 

8(x) = Dirac's delta function 

n 
V 

P 
a 

<*>(«) 

^ 

= damping rate of wave am
plitude 

= kinematic viscosity 
= density 
= surface tension 
= amplitude component of 

each wave number 
= stream function compo

nent of each wave number 
= nondimensional quantity 
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where 5(x) is the Dirac's delta function. Noting the relation 
(Hino, 1977) 

2T J - " 

and substituting equation (14) into equation (1), the following 
equation can be obtained for each wave number component. 

ia'" - (3a2 + /aRe)^„ ' 

- R e ( ^ + — ) ¥ ( 5 ) = -APRe sin a (15) 
\Fr We/ 7r 

The kinematic condition of the velocity at the liquid surface 
y = 1 gives 

u—: = v 
dx 

(16) 

Substituting equations (7) and (13) into equation (16), we have 

* (« ) = -+a (17) 

Then substituting this into equation (15), the boundary con
dition at the liquid surface is eventually obtained as 

$a'" - (3a2 + iaRe)ta' 

/ / a (a3 

\Fr + We, 
+ Re( — + — I ta = -APRe sin a (18) 

w 
The boundary condition that the shear force is equal to zero 
at the liquid surface gives the other equation, 

ta" + a2ja = 0 (19) 

Nonviscous Flow Model. Since the Laplace equation holds 
for the stream function of the nonviscous flow, the following 
equation can be obtained for each wave number component. 

ta" - a2ja = 0 (20) 

The boundary condition by which the y component velocity 
is equal to zero at the wall (y = 0) gives 

l>a = 0 (21) 

At the liquid surface (y= 1), the following equation is obtained 
by excluding the viscous terms in equation (18). 

«*« ' \F r + We/ 
4>a = — A P sin a (22) 

2.2 Solution 

Viscous Solution. Equation (8) can be solved analytically as 

~$a = Ae"~y + Be-~«~y + Ol"+'?i)>; + £><?<-"-?'>> 

where 

p = V(52 + 5-V« +Re2)/2, 

q= V ( - S 2 + 5 V«2+Re2)/2 (23) 

Therefore the stream function for the fluctuation tya can be 
obtained by determining constants A,B,C, and D based on the 
conditions of equations (9), (10), (18), and (19). Using equation 
(17), each wave number component of the amplitude $ ( a ) is 
calculated by equation £23). The liquid surface profile is ob
tained by substituting $ (a ) into equation (13) and by inte
grating equation (13) by means of numerical calculation. 

Nonviscous Solution. Solving equation (20) under the 
boundary conditions of equations (21) and (22) and using equa
tion (17), the liquid surface profile of the nonviscous flow can 
be obtained. 

J~» <v! a -h(x) = 
2AP sin a tanh ae" 

-=zda (24) 
(1/Fr + a2/We) tanh a } 

The integration of equation (24) may be performed by Cau-
chy's integration theorem. The wave number of the liquid 
surface profile is determined by the following equation. 

5 = (F7 + C) tanh 5 (25) 

2.3 Comparison of Present Analysis With Crapper's Results. 
In order to confirm the validity of our analysis, we compared 
the results in this study with those of Crapper waves (Crapper, 
1957). Crapper treated the case of nonlinear waves for non
viscous flow and infinite liquid depth and did not consider the 
gravitational force. Hence, the wave number for nonviscous 
flow determined by equation (25) was compared with that for 
Crapper wave with the condition of infinite liquid depth and 
without the gravitational force. 

Crapper's result of nondimensional wave number for a linear 
wave is 

a = We (26) 

When the gravitational force is neglected (Fr—oo) and the 
liquid depth approaches infinity (a—oo), equation (25) agrees 
with equation (26) of Crapper wave, from which the validity 
of the present results is confirmed. 

3 Results and Discussion 

3.1 Profile of Liquid Surface. When an obstacle is installed 
in a horizontal channel flow, the following three kinds of flow 
patterns are observed on the liquid surface as Forbes (1983) 
showed for the potential flow: (I) no stationary wave appears; 
(II) both surface tension and gravitational waves appear before 
and behind the obstacle, respectively; (III) only the surface 
tension wave appears before the obstacle and the gravitational 
wave does not. 

These three patterns can be classified by the number of wave 
number solutions a determined by equation (25) for nonviscous 
flow; that is, (I), (II), and (III) correspond to the case of (a) 
no solutions, (b) two solutions, and (c) one solution, respec
tively. Equation (25), by which the flow patterns are classified, 
is the same form as Forbes obtained. As noted from equation 
(25), the above flow regimes are classified by Weber and Froude 
numbers. The results are shown in Fig. 2. The results for the 
viscous solution are independent of the Reynolds number and 
agree completely with those for the nonviscous flow. 

The typical surface profiles calculated by the viscous solu
tions are shown in Fig. 3. Figures 3(a), (b), and (c) correspond 
to (I), (II), and (III) described above. Although each surface 
profile is obtained for the condition that the pressure increase 
is distributed within the region -i^x<l, the results for 

- 2 < x < 2 are also shown in Fig. 3 for the purpose of com
parison. Note that the disturbance region does not influence 
the significant characteristics of the stationary wave, such as 
the wave damping rate or the wavelength, although it does 
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Fig. 3 Liquid surface profile 

influence the starting point of the wave as seen in Fig. 3. The 
surface profiles shown in this report were calculated for AP / 
•K = 0.02 in equation (18). The magnitude of AP influences only 
the amplitude of the wave as is obvious from the boundary 
conditions of equations (9), (10), (18), and (19). 

3.2 Wavelength. The calculated wavelength which is non-
dimensionalised by the liquid depth H is shown in Fig. 4. The 
results of the nonviscous solution determined by equation (25) 
are also shown by dotted lines in the figure. Each curve in the 
figures starts at the Weber numbers at which the waves appear 
as stated in section 3.1. It is shown that the wavelength of the 
surface tension wave agrees with that of nonviscous solution 
irrespective of the Reynolds number. Therefore, the effect of 
the viscosity on the wavelength is not recognized. On the other 
hand, the wavelength of the gravitational waves decrease and 
approach those of the nonviscous solution as Re increases. As 
seen from Figs. 4(a) and 4(b), the effect of Re, namely, the 
viscous effect on the wavelength, becomes weak as Fr increases. 
The ratio of the gravitational force to the viscous one reduces 
as Fr increases for a fixed Re. Thus, for the gravitational wave, 
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Fig. 4 Wavelength change with Weber number 

the effect of the viscosity becomes weaker as the wave driving 
force decreases. 

The waves considered here belong to the deep-sea waves, 
since \/H in Fig. 4 is on the order of unity. Therefore it is 
reasonable to assume that the stream velocity is constant in 
the flow cross section, because the effect of the bottom friction 
on the wave damping can be neglected. In Section 4, we discuss 
the case in which the liquid depth is too shallow to assume an 
uniform velocity distribution. 

3.3 Wave Damping by Viscosity. The wave damping rates 
are shown in Fig. 5 for the regimes (II) and (III) in Fig. 2. 
The ordinate, T), is the damping rate of the amplitude per 
wavelength. Thus, if the ratio of the wave amplitude of ad
jacent two waves is a(< 1), r; is defined by 1 -a. The present 
analysis shows that r] remains constant for every two adjacent 
waves. Each curve in the figures starts at the Weber numbers 
at which the waves appear, as well as in Fig. 4. Figure 5(a) 
shows the results for (II), in which both the surface tension 
and the gravitational waves appear. Figure 5(b) corresponds 
to the regime (III) in which only the surface tension waves 
appear. In the case of Re= 100 and 200 for Fr = 0.2 shown in 
Fig. 5(a), the surface tension waves cannot be recognized, since 
viscosity is so strong that the waves disappear within the first 
wave length (JJ= 1). The critical Reynolds numbers at which J; 
becomes unity will be discussed later. 

As shown in Fig. 5, t\ (i.e., the effect of the viscosity on the 
wave motion) becomes weaker as Re increases in each case. 
In general, the damping rates of the surface tension waves are 
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larger than those of the gravitational ones. For the gravitational 
waves, i) decreases in the range of small Weber numbers and 
then approaches a certain value. On the other hand, 7? for the 
surface tension waves gradually increases as We increases as 
shown in both Figs. 5(a) and 5(b). The increasing rate of t\ is 
more remarkable in Fig. 5(fc) for the case in which only the 
surface tension waves appear before the obstacle. The surface 
tension becomes small compared with the viscous force as We 
increase keeping Re a constant, while the viscous damping 
becomes more remarkable as the wave driving force (the sur
face tension) relatively decreases. 

The results of ?; calculated for various Re's and Fr's are 
compared with each other in Fig. 5(c). Although r\ of the 
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surface tension wave increases as We increases, that of the 
gravitational wave decreases as Fr increases (cf. Section 3.2). 
With gravitational wave the viscous damping is proportional 
to the wave driving force, the opposite of the case for the 
surface tension wave. Since the gravitational force and the 
surface tension act on the wave motion in different ways, it 
is considered that the action of the viscosity is also different 
on both kinds of waves. 

In Figs. 5(a) and (b), the results obtained by the Stokes' 
theory (Lighthill, 1978a) are also shown for the purpose of 
comparison. The Stokes' theory makes rj= 1 for Re = 100 and 
200 in Fig. 5(a). The results of ri obtained by the present analysis 
and those by Stokes' theory generally do not agree with each 
other, although the present results tend to approach those by 
Stokes as Re increases, as seen from the results of the gravi
tational waves shown above in Fig. 5(a). In the case of small 
Reynolds number, especially, both results are quite different. 
Stokes' results show 11= 1, which means that the waves dis
appear within the first wavelength as stated before, contrary 
to the results of the present study, r/^l. This is attributed to 
the fact that the Stokes' theory is based on the solution for 
nonviscous flow. An exact analysis as in our study is needed 
for a relatively small Reynolds number range such as Re< 

1000. 
Figure 6 shows the results of the critical Reynolds numbers 

Recr at which the waves disappear within the first wavelength. 
Each curve starts at the Weber numbers at which the waves 
appear as stated in Section 3.1. In Fig. 6, which shows the 
results for the surface tension waves, Recr increases with We 
as expected from the preceding results for the damping rate 
•q. The results for each Fr agree well with one another except 
in the small Weber number region in which the waves begin 
to appear. This is due to the fact that the Froude number does 
not influence substantially the behavior of the surface tension 
waves. The broken lines indicating the results by Stokes' theory 
are almost parallel to those by the present theory, although 
Stokes' curves are larger in all the cases. For gravitational 
waves, the effect of the Weber number on Recf was not rec
ognized, and the Froude number also did not have a significant 
influence, contrary to the case of the damping rate i;. 

4 Stationary Waves on Falling Liquid Film Flow 
4.1 Basic Equations and Their Solution. When the liquid 

film flows down the vertical wall which has an obstacle such 
as a protuberance or a step, various flow patterns are observed 
near the obstacle (Fujita, 1986). In particular, when the Rey
nolds number is on the order of 100, the stationary waves due 
to the surface tension appear above the obstacle as shown in 
Fig. 7. The gravitational waves, however, do not appear, be
cause the gravitational force does not act in the normal di-
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Fig. 7 Coordinate system for falling liquid film flow 

rection to the flow. This corresponds to the infinite Froude 
number. As an application of the preceding analysis, the 
waveform of this flow is obtained here. 

Since the falling liquid films are generally very thin (i.e., on 
the order of 0.1 to 1 mm), the assumption of the uniform 
velocity distribution as used in Section 3 is not applicable. 
Hence, we use the following Nusselt's velocity distribution for 
laminar falling liquid film flow (Re < 600) (Nusselt, 1923). 

U(y) = 3y ;y (27) 

As a result, the following equation for the stream function 
can be obtained in the same manner as derived in Section 2. 

2«2 + /aRe (»-H 
+ - 3 m R e + a4 + /a3Re (»-H "/-a = 0 (28) 

The boundary conditions of equations (9), (10), and (19) 
can be also used for the falling film flow, except for those of 
equation (18) which must be rewritten by neglecting the grav
itational term as a result of Fr— oo. Since no waves appear 
downstream of the obstacle, only the upstream side is signif
icant. Therefore, assuming that the pressure increase occurs 
only in the region x> 0, the following relation can be obtained 

for the boundary condition at the liquid surface y= 1 instead 
of equation (18). 

- ,„ / , 3 \ - 2 ; 'a3Re- 1 -
ia'" - 3a2 + - ( a R e U a ' + - — - & , = —APRe (29) 

4.2 Calculated Results. Since equation (28) cannot be solved 
analytically, the solution is obtained by the numerical calcu
lation. A subroutine for the initial value problem of the or
dinary differential equation is generally prepared in the 
computer system. However, since the differential equation 
treated in this study, equation (28), has the boundary condi
tions at two places, namely, the wall (J = 0) and the liquid 
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surface ( J = l ) , the subroutine cannot be applied directly. 
Therefore, in the present calculation the boundary conditions 
at the liquid surface ( J= 1) were transformed into those at the 
wall (y = 0) by considering that equation (28) is linear. 

Calculated waveforms for the falling water film flow are 
shown in Fig. 8. The results assuming the uniform velocity 
distribution are also shown in the figure for the purpose of 
comparison. Although the wavelength for both results agree 
roughly with each other, the damping rate is somewhat larger 
for the results assuming Nusselt's velocity distribution. This 
is considered due to the friction at the bottom wall. On the 
other hand, the wave amplitude and the displacement from 
the average film thickness are larger for the uniform velocity 
distribution. From these results, it is noted that the effect of 
the viscosity on the stream tends to suppress the deviation of 
the surface profile from the profile in the nondisturbed flow 
and to damp the wave motion. 
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5 Conclusions References 

The effect of the viscosity on the surface wave motion was 
theoretically investigated for the stationary waves generated 
by the disturbance arranged in the flow. The results are sum
marized as follows. 

1 Expressing the disturbance in the flow by the pressure 
increase, the liquid surface profiles can be obtained exactly by 
linear analysis involving viscous effects. 

2 The effect of the viscosity on the wave motion becomes 
stronger as the Weber number increases for the surface tension 
waves and becomes weaker as the Froude number increases 
for gravitational waves. ' 

3 The exact analysis prepared in this report is needed for 
the small Reynolds number range (at least for Re< 1000 treated 
in this study), in which Stokes' theory based on the non-viscous 
solution cannot be applied. 

4 Applying the present analysis, the waveforms are ob
tained for falling liquid film flow with Nusselt's velocity dis
tribution. Results show that the damping rate is somewhat 
larger and the wave amplitude smaller than for flow with a 
uniform velocity distribution. 
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An Analytical Study of the 
Standard k-e Model 
An asymptotic solution of the standard k-e model for two-dimensional turbulent 
channel flow is found. Using this solution, five model constants in the model are 
all determined reasonably with the aid of experimental data. If an asymptotic solution 
with the logarithmic law as the leading term is sought for, the standard k-e model 
is shown to be ill-posed since the second-order solution has divergent terms. 

Introduction 
Flows appearing in engineering and natural sciences are al

most always turbulent. Their direct simulation with no tur
bulence models cannot be performed at high Reynolds number 
even by existing largest computers since such flows contain a 
number of scales. In fact, a direct numerical simulation is 
confined to a low Reynolds number [1]. Therefore, some tur
bulence models are indispensable for numerical simulation of 
flows at high Reynolds numbers. 

As representative of higher order turbulence models, there 
are large eddy simulation (LES) models [2, 3], and the stress 
and k-e models [4-8]. Among them, the Ar-e models, especially 
the k-e model by Jones and Launder [7], have become popular, 
mainly owing to short computing times as well as the simplicity 
of model. In fact, many flows such as wall flows, jets, wakes, 
reacting flows, and flows with buoyancy effects have been 
successfully calculated with the k-e models [6, 8]. Recently, 
the models have been improved to treat flows in the vicinity 
of solid walls by using wall damping functions [7, 9-10]. These 
modified k-e models account for the effects of anisotropy due 
to the existence of walls. Unfortunately, this treatment of 
anisotropy lacks for universality because such modifications 
cannot be applied to general three-dimensional flows, and the 
constants of damping function need to be adjusted for different 
Reynolds number and flows. These facts are unavoidable dif
ficulties of the k-e models. 

Recently, Yoshizawa [11] has derived an anisotropic expres
sion for the Reynolds stress statistically. This work extended 
widely the range of application of the k-e models since the 
expression is applicable to three-dimensional flows. In fact, 
Nisizima and Yoshizawa [12] used the expression to predict 
the anisotropy of turbulent intensities in wall turbulence. 

The k-e models are complex nonlinear systems of equations. 
Because of this nonlinearity, the detailed mathematical struc
ture of the k-e model has hardly been investigated. In this 
paper, we shall discuss an asymptotic solution of the standard 
k-e model and investigate the intrinsic property of the model. 

On the basis of the above investigation, we are led to the 
following important conclusion. Namely, the standard k-e 
model [7] is mathematically ill-posed if an asymptotic solution 
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with the logarithmic velocity law taken as the leading terms is 
sought for. 

Standard k-t Model 
In this paper, the ensemble mean parts of the velocity and 

the pressure are denoted by U, and p, respectively, and the 
fluctuation of velocity is denoted by w, (the variables with 
overbar are dimensional). Then, the mean equations for three-
dimensional incompressible flows neglecting viscous effects are 
given by 

Dt V 
TT+uJ-)Ua dt dx„. 

3Ua 

dxa 

1 df> | dRa< 
p dxa dxa 

(1) 

(2) 

Here, p is the density of fluid, the Reynolds stress Ra/3 is defined 
as 

Ra0=-(UaU0>, (3) 

by using the ensemble mean < >, and repeated subscripts are 
summed from 1 to 3 (for clarity, Greek letters are used for 
noncontracted subscripts). 

In the standard k-e model, Raji is approximated by using 
the eddy viscosity ve as 

Rn 
2 -

(4) 

Here <5„0 is the Kronecker delta symbol, the turbulent kinetic 
energy k is defined by 

k = {uau0)/2, (5) 

ve is the eddy viscosity, and ea0 is the velocity strain defined 
by 

d0„ dUB 

dx8 dxn 
(6) 

Moreover, e (the dissipation rate of turbulent kinetic energy) 
is introduced as 

- - duadua 

dxb dxb 
(7) 
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where v is the kinematic viscosity. In the k-e model, from 
dimensional analysis v e is modeled as 

k2 

•C„- (8) 

in terms ofk and e (CV is a model constant) . The governing 
equations k and e are also modeled in the form that 

Dk o - a / - dk 

Dt~ dxa 
C,,vp dx, 

(9) 

(10) 

a^a \ajr6 a*a/ 

( Q i , C£ / , etc, are model constants). Thus , ( l ) - (2) , (4), and 
(8 ) - ( l l ) constitute a closed system of equat ions. The model 
constants are usually chosen as [6] 

C„ = 0.09, Q , = 1.0, Q , = 1/1.3, C e 2 = 1 . 4 5 , C e 3 = 1 . 9 . (12) 

An Asymptotic Solution for Two-Dimensional Channel 
Flow 

Let us consider a fully developed turbulent channel flow 
(see Fig. 1). In this simple case, the s tandard k-e model also 
retains all five model constants C„, Cku Cm (n= 1,2,3), and 
becomes 

Ty(Cait%. dy 
e = 0 , (14) 

dy ^Jy)+C^(§f-C4 = ° (15) 

v.= C„-

R»=v, 
dy 

(16) 

(17) 

Equations (13)—(17) are nondimensionalized using 

Xj = Lxh 0/ = VUh p=pV2p, ve = vve, 

k= V2k, I = ( V3/L)e, Rn=V2Rn, (18) 

where L and V are the characteristic length and the velocity 
of the flow field, respectively. As a result, we obtain 

d / d dp 

dy \'dyj =Re&*-' 

d_ 

dy 

d_ 

dy 

v„ = C„R.-

*a=*(%) 
/R„ 

d_ 

dy 'dy 

i_d£ 

p dx' 
(13) 

where Re is the Reynolds number defined by 

Re = VL/v. 

If the molecular viscosity effect is recovered in equation (19), 
then it is replaced by 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

d dU dp 
7 - ( 1 + " e h - = R e / . 
dy dy dx 

Integration of (25) yields 

dU dp 
(l + ^ ) — = Re—^ +cons t . 

(25) 

(26) 

N o m e n c l a t u r e 

xa = position vector, Cartesian compo
nents are x, y , z 

t = time 
D/Dt = Lagrangian derivative 

Uj = mean part of velocity, Cartesian 
components are U, V, W 

Hi = fluctuation of velocity, Cartesian 
components are u, v, w 

p = mean part of the pressure 
p ' = fluctuation of pressure 

density of the fluid 
kinematic viscosity 
Reynolds number defined based on 
the centerline velocity and the chan
nel width 

= friction velocity 
distance from the wall 

y + = distance from the wall in wall units 
( = Reu7y) 

P 
V 

R, 

y 

< > = notat ion for ensemble mean 
Rag = Reynolds stress 

P = product ion term 
5a(3 = Kronecker delta symbol 

ve = eddy viscosity 
k = turbulent kinetic energy 
t = dissipation rate of turbulent kinetic 

energy 
K = Karman constant 

A = constant in the logarithmic velocity 
law 

C„ = model constant 
Q.j = model constant used in k equation 

Cm(n= 1,2,3) = model constants used in e equation 
o„, b,„ c„(n= 1,2,3) = coefficients of expanded solution 

a = K 2 A / C V 

& = Cei/Ce2 

y = C0/Ca 
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Since dU/dy = 0 at >> = 1/2, we have 

( l + " 4 r R ! ( ' - 1 / 2 ) - (27) 

In the limit of y—0 and e,,—0, (27) becomes 

(T) = 4 R ^ 
Combining the friction velocity uT in the nondimensional form 

(28) 

«r = 
'Re \9y)Ka,,' \dy ]y/ wall 

(29) 

with (28), the pressure gradient is written in terms of the friction 
velocity as 

dp 

dx 

From (27) and (30), we have 

= 2u2. (30) 

(3D (l + pe)^=ReuUl-2y). 
oy 

This equation is integrated to give 

U=Rtu
2
Ty-Reu

2
ry

2 + 0(yi), or U/uT=y+(l -y) + 0(y3), 

(32) 

where y+ ( = ReuTy) is the distance from the wall in wall units. 
In obtaining (32), we have used the fact that ve in the immediate 
vicinity of the wall should be of OO3) because u<xy, v<xy2 [13], 
and the Taylor expansion formula 

(33) =l-x + x2-x3 + . . . , 1*1 « 1 
I+jr 

has been used. 
In (32), it should be noted that the leading term of (32) 

corresponds to the so-called wall law in the viscous sublayer, 
and the second term comes from the effect of the pressure 
gradient. Moreover, we should note that this expression does 
not depend on the modeling of ve since ve is of 0 0 3 ) . Hence 
it is concluded that the modified k-e models with the effect 
of a wall incorporated can predict (32) correctly regardless of 
the values of model constants or the form of damping func
tions. 

In the case of high Reynolds numbers (ve» 1), (19) becomes 

= - 2Rcu
2 (34) 

dy ( ^ 
using (30). For the purpose of obtaining a solution in a uni
versal form, we introduce the transformations 

U= (U7/K)U*, k= (u2
T/\fc„)k*, e = (ul/K)e*, 

ve = RtKUrp*, Rl2 = u2Rl2, 

where K is the Karman constant referred to later. 
As a result, (34) and (20)-(23) take the form 

J ( 3e*\ e* /dU*\ 6 

J* = 0, 

(35) 

(36) 

(37) 

(38) 

(39) 

a = Kt/yjC„ p = Cel/Ca, y = CtJctr 

(40) 

(41) 

In what follows, we seek for a solution of the standard k-
e model with the logarithmic velocity law as the leading terms. 
The logarithmic law has been established experimentally and 
can be derived numerically from the standard k-e model. This 
law also has been used as.a kind of wall boundary condition 
in the numerical simulation of various k-e models not imposing 
the noslip velocity condition. Hence, it is very interesting and 
important to obtain the solution of the k-e model for small y 
(near the end of so-called buffer layer) with the logarithmic 
law as the leading terms. If the k-e model does not permit 
such an analytic solution, use of the logarithmic law as a 
substitute boundary condition is not justified mathematically. 
For, any numerical schemes are based on analyticity of solution 
including the vicinity of boundaries. 

We consider flows at very high Reynolds number. In such 
a flow, y becomes smaller and smaller for fixed y*( = Rciiry) 
as the Reynolds number becomes large, and the following 
assumption becomes more valid. Let us assume 

v*=y(l+aly + a2y
2 + aiy

3) + 0(y5), (42) 

k* = l+bly + by + biy
3 + 0(y'i), (43) 

e*=(l+c,>' + c2>'2 + c1>'3 + 004))/>', (44) 

where each leading term corresponds to the familiar logarith
mic law. 

Substituting (42)-(44) into (36)-(39), we have U*, a„, b„, 
and c„ («= 1,2,3) as 

U* = lny+ +cor\st.-(ai+2)y + - {-a2 + ax(ax+2))y2 

+ - (-f l3 + 2a2(a1 + l)-flf(a1 + 2 ) jy + 0(y4), (45) 

2 ( 3 ( 7 - D + aCt.) , 4 
»i = — 777^ TTT' bi=~ ( 7 - I ) ( 2 - « C » , ) ' " ' 2 - a < V 

_ 2 ( q Q 1 - 7 + l ) 
Cl ( T - D ( 2 - a C t l ) ' 

(46a, b, c) 

a2 = / , + 2b2-c2, b2 = , , / ' * / 2 , , , (47a, b) 
2 ( 2 a Q , - l ) 

C2 = 2 M + l V M + 1 ) / ' + / 3 

+ (/'+£)(g*~n+3>i- (47c) 
2(2aCkl - 1) J 

/ ^ ( f t . - c , ) 2 , f2=-(al + 2)2-2aCklalbu 

fi=-(al+2f-(bl-c])\as + bi + 4-y(bi-ci)], (48a-c) 

a3 = g, + 263-c3 , b>= / n
8 l + g 2 . (49a, b) 

cy-
1 

2(3aj3-7+l) 
(2a(3+l)g]+g3 + 

(9ackl-2)' 

(« i+f t ) (4a/3-7 + 3)l 
9aCt, - 2 

(49c) 

g,= ( 6 , - c 1 ) { 2 ( 6 2 - c 2 ) - c l ( 6 , - c 1 ) ) , (50a) 

g2= - (a{+2){2a2-ax(ax+2)}-3aCkx(2axb2 + a2bx), 

(50b) 
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Fig. 3 Distribution of K, which is calculated from experimental data of 
Hussain and Reynolds [12] 

g)=-(a[+2)[2a2-al(al+2)} 

-(b2-c2)(a] + bl+4)-2at3alc2 

-(bi-cl){a2-(2y-l)b2 + 2yc2 

-(al + 2)2~bi(al + b]+4) + ybl(bl-cl)}- (50c) 

Here, the expansion (33) has been used. 
Comparing solutions (42)-(45) with (32), we can see that the 

solution (42)-(45) is an asymptotic solution for small y after 
taking the limit c—0. The occurrence of y* and the constant 
in (45) signifies that this type of solution is completed by the 
matching with the solution in the sublayer. 

Zeroth-Order Solution. The zeroth-order solution of the 
standard k-t model is well known as the wall function or the 
logarithmic law, which is usually used as the boundary con
ditions for the standard k-e model, as has already been noted. 
From (42)-(45), it is given by 

U/ur = (l/K)lny+ +A, 

ve/KeuT = Ky, 

k/u^l/yJC, 

(51) 

(52) 

(53) 

«/u?=l/( /y), (54) 

where A is a constant. This zeroth-order solution leads to the 
balance of production and dissipation terms in the k equation. 
This solution, however, does not satisfy (36)-(40) exactly be
cause of pressure term (i.e., - 2 in (36)). This means that the 
influence of the pressure gradient is small for the unidirectional 
flow and the pressure term gives the higher order effects. Hence, 

the zeroth-order solution coincides with that of zero-pressure 
gradient. 

From the results, we can conclude as follows: 

1. U* determines K and A. 
2. v* determines K. 
3. k* determines Cv. 
4. e* determines K. 

The constants K and C„ can be determined using experimental 
data. From the mean velocity profile of Hussain and Reynolds 
[14] (see Fig. 2), the values of K and A in (51) are determined 
as 

K = 0.4088 ±0.0063, 

A = 5.4042 ±0.5003 

(55a) 

(55b) 

where use has been made of the experimental data at y+ =60 
and 100. Here, we should note that our Re is defined on the 
basis of the centerline velocity and the channel width and is 
twice the Reynolds number defined in cited experiments. From 
Laufer's data [15] at y+ =60 and 100, we have 

K = 0 . 3 3 8 0 ± 0 . 0 0 8 3 , (56a) 

A = 5.0787 ±0.5547. (56b) 

The value of (56a) is rather small compared with the commonly 
accepted value [6] 

K = 0 . 4 1 . (57) 

In this paper, we adopt the values of (55a, b) since they contain 
(57). The value of K obtained from the experimental data about 
the eddy viscosity [14] is shown in Fig. 3. This figure clearly 
shows that the value of K depends not only on y+ but also on 
Re. This fact seems to indicate that the asymptotic expansions 
for [/*, k*, e*, and i>* do not satisfy (36)-(39) with the same 
degree of accuracy at a location. The value of K between y * = 70 
and 90, however, is nearly equal to 0.4, as seen in Fig. 3. Hence 
we assume that all of U*, k*, e*, and c* can be approximated 
by the wall function at y+ =80. 

The turbulent energy k measured by Clark [16] and Kreplin 
and Eckelmann [17] is shown in Fig. 4. From the data of Clark 
[16] of Re = 2 x 15200 and 2 x 27600 at y+ = 80, C, is estimated 
as 

C„ = 0.08654 ±0.02074. (58) 

From the data of Re = 2x45600, C„ is given as 0.04948. From 
the data of Kreplin and Eckelmann [17] at y+ =80, C„ is es
timated as 0.2371, but their Reynolds number (Re = 7700) is 
rather low. From the data of Laufer [15] at j<+=80 and 
Re = 2 x 30800, Cv is estimated at 0.1164. As can be seen from 
the above comparison of various data, the values of Cp con
siderably scatter compared with the value of K. The spatial 
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Fig. 5 Distribution of eddy viscosity due to Hussain and Reynolds [12] 

variation of C„ also has been pointed out by Rodi [18] in 
channel flow. In this paper, let us adopt the value (58) as C„. 
Figures 3 and 4 imply a possibility that the values of K and C„ 
depend on Rc and y+, although they are commonly considered 
constant. 

Experimental data of e are obtained using the assumption 
[13] 

{(dw/dyf) = {{du/dy)2), etc. (59) 

Therefore, the reliability of such data is low compared with 
those of £/*, k* and v*, and we do not estimate K from e. 

First-Order Solution. The first-order solution is 

U*=lny+ +A-(ax + 2)y, (60) 

r:=yil+a&), (61) 

k* = 1 + bxy, (62) 

e* = ( l + c , / ) / / . (63) 

The importance of the first term in (60) is very high, com
pared with that of the counterparts in v* and k*. This fact 
comes from that in the limit v—Q (Re—oo) with y+ fixed, y 
tends to zero and that part of U*, which depends on y+, 
becomes dominant. This is the reason why the logarithmic 
velocity profile has a wide range of applicability. The influence 
of the third term of (60) can be detected only for large y+. 
This term makes the observed velocity f o r / + > 500 larger than 
the logarithmic velocity profile (see Fig. 2) since at + 2 < 0 (see 
(70)). 

Using (466), Ckl in (37) is calculated as 

Q , = (2 + 4/fc,)/«. (64) 
which can be estimated with the aid of bx estimated from (62). 

At this time, a ( = K 2 / V CJ) can be estimated from the zeroth-
order solution. Using (46a), y and (3 are calculated as 

2aCkl 
T = 1 "6 + f l l ( 2- a C t l r

 ( 6 5 ) 

aj3 + 1 - 7 = 0, or 0 = (7 - l ) /o ; . (66) 

The relation (66) is well known [10] and can be obtained by 
substituting the zeroth-order solution into the e equation (38). 
If the constant Cfi ( = 2) is determined from the data about 
the decay of grid turbulence, all of the five constants C„ Ckl, 
Cel, Ce2, and Cei are determined. Hence, it is concluded that 

the asymptotic solution of the standard k-e model can be 
constructed up to the first order without any mathematical 
difficulty. 

From the data of Laufer [15] of Re = 2x 12300 at y+ =78 
and 130, k is estimated as 

k/ul = 3.2083 -8 .4861/ . (67) 

Since C„max = 0.10728 and C„min = 0.06580, 6, is estimated as 

-2 .7795<b x < -2.1768. (68) 

From the data of Hussain and Reynolds [14] (see Fig. 5) at 
/ = 0.075 and 0.1, ve is approximated as 

i>e/ReiiTy = 0.4725 - 1.660/ (Rc = 2 x 13800), (69a) 

f/ReuTy = 0.4698 - 1.572/ (Rc = 2 x 23200), (69*) 

ve/KeuTy = 0.4834-1.700/ (Rc = 2 x 32300). (69c) 

Using Kmax = 0.4151 and xmin = 0.4025, ax is estimated as 

- 4 . 2 2 3 6 < a , < - 3 . 7 8 7 0 . (70) 

From (64) and (68), Ckx is estimated as 

0.5745^ Q.,g0.7802, (71) 

where 0.6717 and 0.4946 have been adopted as the maximum 
and minimum values of a in (41), respectively. In estimating 
7 of (65), we need some caution. When we use (70) and (71) 
to estimate (65), we encounter vanishing of the denominator 
in (65). In order to avoid it, we adopt the mean value of (68) 
or -2.4782. Consequently, aCki is estimated as 0.3859 from 
(64), and we have 

-6 .8173<a, ( 2 - a C k l ) < -6.1126. (72) 

Combining (65) and (66) with (72), we obtain 

1.9443g7<7.8544, 1.4059</3< 13.8585. (73) 

As a result, the choice of Ce3 = 2 leads to 

0.3579<C£,< 14.2549, 0.2546< C t 2< 1.0286. (74a, b) 

On comparing (58), (71), (74), and Ce3( = 2) with (12), we can 
see that the usually adopted constants (12) are really not so 
far from the values estimated above. 

Let us study the channel flow at Re = 2x13800 and 
ur = 0.0464 using both the present asymptotic solution and the 
numerical integration of (36)-(39) based on the author's nu
merical method [19]. In the latter numerical integration, the 
boundary conditions are given at / = 0.05 a n d / = 0.95 (/+ = 64), 
and the constants (12) are used, and uniform mesh size 1/100 
is taken. Figures 6a-d show the numerical and asymptotic 
solutions (60)-(63). The numerically calculated mean velocity 
and turbulent energy show good agreement with experimental 
results. The numerically calculated eddy viscosity, however, 
does not coincide with the experimental results near the central 
region. This point has not so far been pointed out clearly. The 
reason is that the eddy viscosity has been considered as a 
secondary quantity of turbulence since the Reynolds stress Rn 

is determined almost by the imposed pressure gradient. The 
asymptotic solution shows good agreement with the numerical 
solution f o r / < 0.1. 

The reasons why the range of applicability of our asymptotic 
solution is narrow compared with the numerical solution can 
be stated as follows. The terms which exert the largest influence 
in the k and 6 equations are different in the order of / near 
the wall. 

Second-Order Solution. The second-order solution is sim
ilarly obtained as 
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U* = lny+ +A- (ax + 2)y + -{ -«2 + fli(*i + 2 ) ) y , (75) 

i>*e=y(\+a]y + a1y
2), 

k* = l+biy + b2y
2, 

e* = (l+cly + c2y
2)/y. 

(76) 

(77) 

(78) 

This solution has 

aff+l-y (79) 

in the denominators of a2 and c2 of (47). The first-order so
lution, however, requires that (79) should vanish, as can be 
seen from (66). Similarly, the third-order solution (42)-(45) 
has divergent terms. That is, the standard k-e model is math
ematically ill-posed if an asymptotic solution with the loga
rithmic velocity law as the leading terms is sought for or an 
asymptotic solution is sought for in the limit of c-~0 with y* 
fixed (its lowest-order solution has been used as a substitute 
boundary condition of the k-e model not imposing the noslip 
velocity condition). 

Then, how has this difficulty been avoided in the standard 
k-e model? In the model, we do not impose complete vanishing 
of (79) to use 

a/3+1-7 = 0 (80) 

and estimate Cl2 [5]. As a result, such a solution does not 
satisfy the logarithmic velocity law in a strict sense. 
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Conclusion 
In this paper, an asymptotic solution of the standard k-e 

model with the logarithmic velocity law as leading terms is 
found, and a method to estimate the model constants is given. 
The most important property of the standard k-e model is the 
dominance of energy production and dissipation effects. This 
property is supplemented by the addition of the diffusion effect 
from k and e itself in the k and e equations, respectively. 

The present asymptotic solution, whose leading terms are 
called the wall law, is shown to have divergent terms. This 
mathematical ill-posedness of the standard k-e model is usually 
avoided through the delicate adjustment of model constants. 
This point is closely related to the stiffness of the model con
stants in the k-e model. 

In order to overcome this deficiency of the standard k-e 
model, a revised k-e model, that is mathematically well-posed, 
will be reported in a future paper. 
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Navier-Stokes Flow Analysis for 
Hydraulic Turbine Draft Tubes 
Three-dimensional turbulent viscous flow analyses for hydraulic turbine elbow draft 
tubes are performed by solving Reynolds averaged Navier-Stokes equations closed 
with a two-equation turbulence model. The predicted pressure recovery factor and 
flow behavior in the draft tube with a wide range of swirling flows at the inlet agree 
well with experimental data. During the validation of the Navier-Stokesflo w analysis, 
particular attention was paid to the effect of grid size on the accuracy of the numerical 
result and the importance of accurately specifying the inlet flow condition. 

1 Introduction 
The role of the draft tube is to decelerate the velocity of the 

water leaving the turbine runner, thereby converting the excess 
kinetic energy of the outlet stream into a rise in static pressure. 

For a number of reasons, the proper design of an elbow 
draft tube is a difficult task. The geometry of a typical elbow 
draft tube is illustrated in Fig. l(o). It consists essentially of 
a short conical diffuser followed by a 90 deg elbow of varying 
cross section and then a rectangular diffuser section. The shape 
of the cross section changes from being circular at the inlet 
end through elliptical within the elbow to rectangular at the 
exit. At the same time, the cross-sectional area of the draft 
tube mostly increases from inlet to outlet. 

Recently, intensive efforts have been devoted to develop a 
suitable numerical algorithm for computing the general Navier-
Stokes flows bounded by complex geometries [1,2,4]. The al
gorithm has been applied to solve two and three-dimensional 
flow problems in different hydraulic turbine components 
[3,4,7], and has proven to be an excellent analytical tool for 
the hydraulic designer when they are well validated. 

The most important parameter characterizing the draft tube 
performance is the pressure recovery factor, or pressure-rise 
coefficient [3,8], which is defined as: 

c = p * - p ' 
pr Massflow weighted averaged kinetic energy at inlet 

where Pi is the massflow-weighted averaged static pressure 
at the inlet and P2 is the massflow-weighted averaged static 
pressure at the outlet. 

The strength of the swirling flow at the draft tube inlet can 
be quantified as the swirl intensity, which is defined as the 
ratio of the angular momentum flux to the axial momentum 
flux. In the present paper, we use this definition of swirl in
tensity to characterize the swirling inlet flow. This definition 
is different from the solid-body swirl ratio which is defined as 
the ratio of the maximum tangential velocity to the bulk axial 
velocity at the inlet. 

Experimental work has also been carried out to study the 
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flow behavior in hydraulic turbine draft tubes in order to 
validate the numerical algorithm. Both wind tunnel and water 
test stand were used for the investigation. A series of tests with 
the wind tunnel was done to study the efficiency and flow 
behavior of a low head elbow draft tube with a wide range of 
swirling flow conditions at the inlet. Measured velocity vector 
field and evolution of total pressure loss, of static and dynamic 
pressures along the main flow direction are compared with 
computer prediction. Also, in a water model test stand, the 
pressure recovery factor of a medium head elbow draft tube 
operating with Francis runners was selected for the study. 

During the validation of the Navier-Stokes flow analysis, 
particular attention was paid to the effect of grid size on the 
accuracy of the numerical result and the importance of ac
curately specifying the inlet flow condition. Also, the effect 
of the Reynolds number on the draft tube efficiency was in
vestigated. 

2 Numerical Analysis 
2.1 Formulation and Numerical Algorithm. The three-di

mensional draft tube flow analysis is based on the full Rey
nolds-averaged Navier-Stokes equations. The k — e two 
equation turbulence model [6] is adopted here as closure form. 
The numerical formulation comprises a linearized, semi-im
plicit, conservative finite volume algorithm implemented in a 
general curvilinear coordinate system. The detail of the gov
erning equations, curvilinear coordinate system, algorithm of 
treating pressure-velocity coupling, and solution method can 
be found in [1,2,4] and will not be repeated here. 

As to the finite difference operators, the standard 2"rf-order 
central difference approximation is applied to all the deriva
tives except the convection terms. For the convection terms, 
both the commonly used hybrid scheme, i.e., combination of 
the lJ'-order upwind and 2"rf-order central differencing scheme, 
and the 2"rf-order upwind scheme are used for discretisation 
[5]. The system of finite difference equations are solved using 
the successive line overrelaxation method. Here a combined 
use of the Cartesian velocity components and contravariant 
velocity components is devised. In the momentum equation, 
the Cartesian components are treated as the primary variables, 
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Fig. 1(a) Three-dimensional view of the flow behavior in a low head 
elbow draft tube 

Fig. 1(6) Three-dimensional view of the flow behavior with three dif
ferent inlet swirl conditions 

while in the continuity equation the contravariant velocity com
ponents are first updated directly to satisfy the continuity equa
tion. Then the so-called D'Yakonov iteration [2] is used to 
yield the corresponding values between the contravariant and 
Cartesian components in an efficient manner. The body-fitted 
grid system is generated using the combined elliptic generation 
method and local interpolation procedures [9], 

2.2 Boundary Conditions. Figure 1(a) illustrates the flow 
domain of an elbow draft tube. No-slip conditions are applied 
to all the nodes at solid walls. At the nodal position next to 
the solid wall, the so-called wall function treatment [6] is used. 
At the inlet of the flow domain, the velocity profiles are im
posed by the turbine exit flow. At the exit, a zero ls'-order 
derivative along the streamwise direction is adopted for all the 
dependent variables, except for the static pressure which does 
not require numerical boundary conditions due to the nature 
of the staggered grid system. As demonstrated in [10], this 
practice works very well for the general flow computation. 

3 Experimental Investigation 
Experimental work has been carried out to study the flow 

behavior in hydraulic turbine draft tubes in order to validate 
the numerical algorithm. Detail flow behavior investigation 

was performed in the wind tunnel. Also, realistic inlet flow 
profiles from Francis runner model in water test stand were 
used for the validation. 

3.1 Wind Tunnel Test Results. A low head elbow draft tube 
(see Fig. 1(a) was selected for the experimental investigation 
in the wind tunnel. The inlet swirling flow was generated by 
means of an axial distributor which is an annular cascade of 
18 NACA0012 profile blades. The swirl intensity at the inlet 
varies from 0 to 44.6 percent when the blades are oriented 
from 0 to 30 deg. Typical.inlet flow profile generated by the 
axial distributor is shown at the top of Fig. 5(a). The axial 
component, represented by solid line, is decelerated at the 
center of the inlet region due to the presence of the hub. The 
tangential component, shown in dotted line, is a combination 
of a solid body swirl and a free vortex flow. As the flow at 
the draft tube inlet is assumed to be axisymmetrical, only one 
pitot traverse along the diameter is required to obtain the inlet 
flow condition. For each diametrical traverse, 13 points of 
reading were taken. The distance from the wall to the nearest 
reading point is 0.5 in. The diameter at the inlet section is 16.3 
ins. 

The first series of test was to determine the inlet swirling 
flow which provides the optimal pressure recovery of the draft 
tube. The second series of tests with the wind tunnel is to 
investigate the flow behavior of the same elbow draft tube 
with and without swirling flow at the inlet. First, the draft 
tube was tested with the optimal swirling flow by setting the 
distributor blade orientation at 15 deg. Then, the axial dis
tributor was removed in order to obtain a uniform flow con
dition at the draft tube inlet. From the inlet to the outlet of 
the draft tube, 8 measurement cross sections were selected for 
the flow behavior investigation. For each cross section, as many 
as 6 traverses, spaced side wall to side wall, were made. For 
each pitot traverse, 7 readings were taken. Exception was made 
for the first two sections, located in the cone region where the 
flow is assumed to be axisymmetrical, only one diametrical 
traverse was required to obtain the flow characteristics. During 
the flow investigation with inlet uniform flow, difficulties were 
encountered with the pressure reading due to large flow sep
aration occurring inside the draft tube. Also, the assumed 
axisymmetrical flow condition at the inlet was not always re
spected, especially for low swirl and uniform inlet flow. In 
such cases, the average profile is obtained between the two 
halves of the diametrical pitot measurement. 

3.2 Water Model Test Stand Result. An elbow draft tube 
of medium head was selected for the flow investigation in the 
water model test stand. The inlet flow profile, obtained from 
various Francis runners at different operating conditions, var
ies from a solid body swirl to a free vortex. The pressure 
recovery of the draft tube was measured for each inlet condition 
and compared with the computer prediction. 

4 Validation With Experimental Data 
The aim of the present study is to verify if the Navier-Stokes 

flow analysis could predict correctely the pressure recovery 
and the flow behavior in an elbow draft tube for a wide range 
of inlet flow conditions. Also, a parametric study is carried 
out in order to evaluate the influence of some important pa
rameters on the accuracy of the numerical solution. 

Hybrid and second order upwind schemes were used during 
the validation process. In general, both numerical schemes 
predict similar flow behaviors. The hybrid scheme always pre
dicts a higher pressure recovery factor by about 3 percent. But 
for all the cases, the second upwind scheme predicts better the 
evolution of the static and dynamic pressures along the main 
flow direction, as shown in Figs. 5(a), 5(b), 8(a), and 8(b). 
The second upwind scheme gives us the most satisfactory re-
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Experimental data 
Numerical results (l*1 treatment) 
Numerical results ( 2 n i treatment) 

20 40 
SWIRL INTENSITY (%) 

Fig. 2(a) 

Experimental data 
Numerical results ( l ' ( treatment) 
Numerical results (2" ' treatment) 

F ig . 2.b Medium grid solution 

SHIM, INTENSITY 

Fig. 2(6) 

(X) 

Fig. 2 Pressure recovery factor as function of the swirl intensity. Com
parison between experimental data and computer prediction 

suits and except otherwise stated, only its results are presented 
here. 

The inlet turbulence level is specified as 5 percent of the 
kinetic energy at the inlet for all the cases. The grid size affects 
the accuracy of the solution and also the computation time. 
In order to assess the grid dependancy of numerical solution, 
flow analyses were performed with four different grid sizes. 
In general, for a coarse grid system (7x11x31 nodes) only 
about 20 minutes of CPU is required for obtaining a converged 
steady-state flow solution. The medium grid system 
(11 x 15 x 45 nodes) and the fine grid system (15x21x61 nodes) 
required respectively about 3 and 15 hours of CPU whereas 
the very fine grid (21 x 29x81 nodes) took about 40 hours of 
CPU for one flow solution. All the calculations were made 
with a VAX 8600 computer. 

On each node at the inlet of the grid system, the three velocity 
components are specified by linear interpolation from pitot 
traverse measurements along the inlet diameter. Near the solid 
wall, all the grid velocity components are also linearly inter
polated between zero (value for the wall) and the first value 
measured from pitot traverse. 

The Reynolds number, which is based on the draft tube inlet 
diameter and the average axial velocity at the inlet, is consid
ered in the flow analyses. For flow in water model test stand, 
the Reynolds number is about 106 whereas the Reynolds num
ber is about 0.5 x 106 for all tests with the wind tunnel. With 
an inlet optimal solid body swirl and by varying the Reynolds 
number from model test to prototype operating conditions 
(from 106 to 2. x 107), the draft tube pressure recovery factor 
is improved by about 2.5 percent. The same trend is observed 
when we step up the turbine efficiency from model test to 
prototype. 

4.1 Numerical Prediction of the Pressure Recovery Factor. 
The pressure recovery of the low head elbow draft tube tested 

Fig. 3(a) Elevation view • velocity field near draft tube center 

Fig. 3(6) Plan view • velocity field near the top of the draft tube 

Fig. 3(c) Plan view • velocity field at the mid-height of the draft 
tube 

Fig. 3 Flow behavior with inlet swirling flow 

with the wind tunnel is shown in Fig. 2. For this particular 
case, the pressure recovery of the draft tube is decreased with 
the presence of a weak inlet swirling flow (distributor blades 
oriented at 5 deg), but quickly the draft tube finds its best 
efficiency at 22 percent swirl intensity. Beyond this point, the 
pressure recovery decreases with higher swirl intensities. 

The flow analyses were performed with two different treat
ments for the velocity assigned at the solid wall. As the first 
treatment, the velocity components prescribed for the grid 
system at the inlet are linearly interpolated from pitot traverse 
measurements as explained earlier. The second treatment con
sists of calculating the velocity at the wall by linear extrapo
lation, instead of simply setting these values equal to zero. 
Then this set of data was used to specify the grid velocity 
components by interpolation. This manner of extrapolation 
for velocity values at solid wall improves very slightly the 
quality of the boundary layer, but it is enough to greatly in
fluence the numerical result for inlet condition with low swirl 
intensity. 

In Fig. 2(a), results from both treatments with the fine grid 
are shown. The solid line represents the computer prediction 
obtained with the first treatment whereas the dashed line rep
resents the results obtained with the second treatment. Both 
curves agree very well with the experimental data, especially 
for high swirling flows where the centrifugal force is prepon
derant, therefore the uncertainty on the boundary layer is much 
less important. For low swirl intensities, the experimental data 
are bounded by the two curves indicating that more accurate 
experimental data near the wall is required for more precise 
prediction. 

The comparison is also made with the medium grid system. 
The same behavior is observed, but the results obtained from 
the two treatments are less different. Excellent correlation with 
experimental data is also obtained with the medium grid sys
tem. Comparing the numerical results obtained from two dif
ferent grid sizes, the pressure recovery factor obtained with 
coarser grid is consistently higher than with finer grid by about 
3 percent due to larger numerical viscosity. 

4.2 Numerical Prediction of the Flow Behavior With Swirl
ing Flow at Inlet. The flow behavior in the elbow draft tube, 
with an optimal inlet swirling flow, was investigated in detail 
with pitot traverses taken from several cross sections (indicated 
in Fig. 1(a)). The experimental data are compared with nu
merical results obtained with four different grid sizes: coarse, 
medium, fine and very fine grid. 
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Fig. 4(a) Measurement section no. 3 

Fig. 4(b) Measurement section no. 5 

J if 
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Experimental data 

Fig. 4(c) 

Numerical results 

Measurement section no. 8 

Fig. 4 Flow behavior with inlet swirling flow 
coming towards the reader) 

secondary How (flow 

The display of the velocity vectors in the main flow direction 
is shown in Fig. 3. The numerical result obtained with the fine 
grid system is presented. Observation at the velocity vector 
distribution at different elevation and plan views indicates 
clearly that a large recirculation zone occurs at the middle of 
the elbow section and further downstream, flow separation 
appears at the center and near the top of the draft tube. Also 
toward the outlet of the draft tube, the flow is somewhat shifted 
to one side wall. This tendency is more accentuated with a 
stronger inlet swirling flow. Excellent agreement is obtained 
between the measurement and the solution results from fine 
and very fine grid systems. The solution from medium grid 
predicted well the recirculation zone but not the flow separation 
near the draft tube outlet. The solution from coarse grid did 
not show any recirculation zone in the main flow direction. 

Figure 4 shows the comparison of the secondary flow at 
different cross sections of the elbow draft tube. At the meas
urement section no. 3 which is located at the beginning of the 
elbow, both numerical result and experimental data show a 
strong swirl at the middle of the section, slightly to the left of 
the section center. This swirl is transported from the inlet swirl 
condition. At the measurement section no. 5, located near the 
end of the elbow, three distinctly swirling vortical flows are 
observed from the numerical result. The double swirls of op
posite direction generated by the bend curvature are found at 
the two top corners. The third swirl, found at the left of the 
section center, is the existing Swirl transported from the inlet. 
Observation from the experimental data shows clearly the main 
swirl at the left of the section center and only one swirl gen
erated at the top left corner. The secondary flow at the draft 
tube outlet, which is represented by the measurement section 
no. 8, is much weaker (velocity vector of this section was 
magnified by three). The experimental data indicate that all 
the swirls are destroyed completely whereas a trace of the main 
swirl from the inlet is still preserved by the numerical simu
lation. This discrepancy is probably due to both the experi
mental uncertainty of the pitot measurement for recirculation 
flow and the shortcoming of the k — e turbulence model. 

A three-dimensional view of the simulated flow is repre
sented in Fig. \(b) (medium swirl intensity). The velocity vec
tors are shown at the inlet and outlet sections. All the solid 
lines starting from the center region of the inlet section and 
finishing at the outlet represent the streaklines of the mean 
velocity field. At the beginning of the elbow region, the ran
domly oscillating spiral streaklines indicate a recirculating zone. 
Also the streaklines are shifted to one side of the draft tube 
at the elbow region then shifted back to the opposite side near 
the outlet region. For higher swirl intensity, as shown in Fig. 
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Fig. 5(b) Flow behavior with inlet swirling flow. Evolution of dynamic 
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1(b), the recirculation zone appears more important and the 
flow is shifted more to one side wall at the draft tube outlet. 
For low swirl intensity, the flow is shifted evenly to both side 
walls of the draft tube, and the mild spiral form of the streak
lines indicates the existence of the double swirls generated by 
the bend curvature. In this case, the flow recirculation zone 
is not observed. 

In order to study the evolution of the static and dynamic 
pressures along the main flow direction, massflow-weighted 
average values of these properties at each cross section are 
calculated. The numerical results are then compared with the 
experimental data in Fig. 5(a) and 5(b). At the ordinate, the 
pressures are normalized by the inlet dynamic pressure. At the 
abscissa the center line length is normalized by the draft tube 
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Fig. 6(a) Elevation view - velocity field near draft tube center 

(f 
Fig. 6(6) Plan view - velocity field at the mid-height of the draft 
tube 

Fig. 6 Flow behavior with inlet uniform flow 

Fig. 7(a) Measurement section no. 3 

Fig. 7(6) Measurement section no. 5 
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Fig. 7(c) Measurement section no. 8 

Fig. 7 Flow behavior with inlet uniform flow - secondary flow (flow 
coming toward the reader) 

inlet diameter. Results from the very fine and fine grid systems 
predict very well the variation of all the pressures, specially at 
the accelerating region at the end of the elbow section (Fig. 
5(a) for the 2nd order scheme). The result from the medium 
grid is acceptable but not for the coarse grid. 

4.3 Numerical Prediction of the Flow Behavior With Uni
form Flow at Inlet. The flow behavior in the draft tube was 
also investigated with a uniform flow (without swirl) at the 
inlet. As the previous case, the experimental data are compared 
with computer results obtained from four different grid sizes. 

The display of the velocity vectors in the main flow direction 
is shown in Fig. 6. In this case, the numerical result obtained 
with the very fine grid system is presented. Contrary to the 
previous case, observation from experimental data and nu
merical results indicates that no recirculation is occurring at 
the elbow region whereas the flow separation appears very 
early from the elbow region and carried down to the draft tube 
outlet. All the solutions obtained from the four grid sizes 
predict the same flow behavior, but the experimental data 
shows a stronger flow separation zone than the prediction. 

Figure 7 shows the comparison of the secondary flow at 
different cross sections of the elbow draft tube. At the meas
urement section no. 3 which is located at the beginning of the 
elbow, the numerical result shows that the double swirls gen
erated by the bend curvature are already well defined whereas 
the experimental data do not show clearly the double swirls. 
At the measurement section no. 5, located near the end of the 
elbow, the double swirls are observed clearly at the two top 
corners from both experimental and numerical data. At the 
measurement cross section no. 8 which is at the outlet of the 
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draft tube, the secondary flow is much weaker (velocity vector 
of this section was magnified by three). But as in the previous 
case, the experimental data shows that all the swirling flows 
disappear completely at the outlet section whereas the nu
merical solution still preserve the trace of the double swirls 
generated from the elbow region. It is interesting to mention 
that all the solutions from four different grid sizes predict the 
same secondary flow behavior. 

As in the previous case, the evolution in the main flow 
direction of the total pressure loss, the static and dynamic 
pressures obtained from the numerical solution is compared 
against the experimental data in Figs. 8(a) and 8(b). The var
iation of the pressures is more evident near the accelerating 
region. This tendency is well predicted by the 2nd order upwind 
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Fig. 10 Flow behavior wifh two different inlet swirling flows 

5 Conclusions 

This paper discusses the application of the three-dimensional 
Navier-Stokes flow analysis to hydraulic turbine draft tubes. 
The predicted pressure recovery factor and flow behavior in 
the draft tube with a wide range of swirling flows at the inlet 
agree well with experimental data. Particular attention was 
paid to the effect of grid size on the accuracy of the numerical 
result and the importance of accurately specifying the inlet 
flow condition. As future work, validation of the present Na
vier-Stokes flow computational algorithm will be applied to 
other hydraulic turbine components to continually improve 
the present design capacity. 

scheme solution (Fig. 8(o) whereas the hybrid scheme solution 
is less sensitive to the dynamic pressure variation. The nu
merical results obtained from fine and very fine grid systems 
agree quite well with measurements except for the dynamic 
pressure. But as we explained earlier, large flow separations 
taking place in the draft tube made the pitot measurement 
more difficult than usual. 

4.4 Validation With Water Model Test Result. Figure 9(a) 
shows the variation of the pressure recovery factor of a medium 
head elbow draft tube functioning with various Francis runners 
at different operating conditions. Observation at the flow con
ditions at the draft tube inlet shows that the flow profile ob
tained has all the possible combinations, varied from a solid 
body swirl to a free vortex. The draft tube performs better 
with inlet swirling condition close to solid body swirl profile, 
shown by experimental data near the upper bound. As the inlet 
profile deviates from the solid body swirl, the draft tube ef
ficiency decreases. This is the reason why there is a large var
iation of the draft tube pressure recovery factor for the same 
swirl intensity. But, if we consider only the upper bound of 
these experimental points, the draft tube efficiency is found 
to be optimal at swirl intensity from 20 to 25 percent. Prediction 
of the draft tube pressure recovery factor with solid body swirl 
specified as inlet conditions obtains the same optimal swirl 
intensity which is about 22 percent. Also, some of the measured 
inlet flow profiles, generated by Francis runners, were selected 
for flow analyses. Comparison between computer prediction 
and experimental data is satisfactory as shown in Fig. 9(b). It 
is worth noting that the draft tube pressure recovery is very 
bad with an inlet free vortex flow compared to an inlet solid 
body swirl condition. The difference in the flow behavior with 
the two inlet swirl conditions is shown in Fig. 10. 
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Numerical Study of Turbulent 
Secondary Flows in Curved Ducts 
The pressure driven, fully developed turbulent flow of an incompressible viscous 

fluid in curved ducts of square cross-section is studied numerically by making use 
of a finite volume method. A nonlinear K -1 model is used to represent the turbulence. 
The results for both straight and curved ducts are presented. For the case of fully 
developed turbulent flow in straight ducts, the secondary flow is characterized by 
an eight-vortex structure for which the computed flowfield is shown to be in good 
agreement with available experimental data. The introduction of moderate curvature 
is shown to cause a substantial increase in the strength of the secondary flow and 
to change the secondary flow pattern to either a double-vortex or a four-vortex 
configuration. 

1 Introduction 
The study of viscous flow in curved or helically coiled ducts 

has been of fundamental interest to fluid dynamicists. There 
are numerous applications, which include the flow through 
turbomachinery blade passages, aircraft intakes, diffusers, and 
heat exchangers. Some of these problems of practical interest 
involve longitudinal curvature in the geometry for which the 
associated centrifugal forces can generate a secondary flow, 
which is normal to the main flow direction. Such secondary 
flows not only cause a reduction in the volumetric flow rate, 
but they can also cause the axial velocity field to be distorted 
with an outward shift of the contours of constant velocity. In 
addition, it is well known that the turbulent flow in straight 
noncircular ducts is characterized by the occurrence of sec
ondary flows (see Gessner and Jones, 1965 and Nakayama et 
al., 1983). A clear understanding of the evolution and con
sequences of the turbulent secondary flows in curved and 
straight ducts is, therefore, quite important from the design 
standpoint. The present study is intended to address a facet 
of this issue, and involves the computational modeling of fully 
developed turbulent flow in square ducts with an emphasis on 
the prediction of secondary flows. 

The results available in the literature on turbulent flow re
lated to the work to be presented herein can be classified into 
two broad categories: fully developed flow in straight ducts 
and developing flow in curved ducts. The case of fully devel
oped turbulent flow in straight ducts of square cross section 
was studied by Gessner and Jones (1965), Melling and 
Whitelaw (1976), and Nakayama et al. (1983), among others. 
Gessner and Jones (1965) conducted a series of experiments 
using hotwire anemometry to analyze fully developed turbulent 
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author was in residence at ICASE, NASA Langley Research Center, Hampton, 
VA 23665. 
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flow in a square duct at a Reynolds number of 150,000. They 
also carried out computations by a finite difference method 
with an algebraic stress model to predict qualitatively the major 
feature of the flowfield, namely, the eight-vortex secondary 
flow structure. Melling and Whitelaw (1976) performed de
tailed experiments for fully developed flow using laser-doppler 
anemometry, and were the first to describe the axial velocity 
field and the Reynolds stress distribution in detail. Nakayama 
et al. (1983), on the other hand, analyzed the fully developed 
flowfield in ducts of rectangular and trapezoidal cross-sections 
computationally using a finite-difference method based on the 
algebraic turbulence stress model of Launder and Ying (1972). 
They were able to obtain a flowfield in good agreement with 
the available experimental measurements for a number of se
lected cross-sections. Improved calculations were conducted 
by Gessner and Po (1976) and DeMuren and Rodi (1984), using 
the nonlinear algebraic stress model of Rodi. 

The computational analysis of developing turbulent flow in 
curved square ducts has been conducted by Pratap and Spald
ing (1975), Humphrey et al. (1981), and Choi et al. (1989). 
The work by Pratap and Spalding (1975) consisted of the 
solution of the three-dimensional time averaged Navier-Stokes 
equations incorporating a two-equation turbulence model based 
on a first order curvature ratio effect. Their study, which was 
conducted for a curvature ratio of 4.13 and a Reynolds number 
of 70,600, showed good agreement with the experimental re
sults in the region near the entrance. However, in the fully 
developed region, they observed considerable discrepancies with 
the experimental results. Humphrey et al. (1981) also analyzed 
the developing turbulent flow in a square duct, but at a cur
vature ratio of 4.6 and a Reynolds number of 40,000. They 
solved the three-dimensional time-averaged Navier-Stokes 
equations with a two-equation turbulence model, by using a 
finite-difference method, and compared the results with their 
experimental findings obtained by laser-doppler anemometry. 
They concluded that in spite of the complex mean flow and 
Reynolds stress distributions, the centrifugal force and radial 
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pressure gradient imbalance primarily controls the cross-stream 
flow. The calculated mean velocity results are therefore not 
strongly dependent on the turbulence model used. Choi et al. 
(1989) conducted computations for developing turbulent flow 
in a square-sectioned 180 deg bend. 

The present study is motivated by the lack of a detailed 
analysis and prediction capability for turbulent secondary flows 
in curved ducts. Furthermore, several of the commonly used 
turbulence models (in particular, the standard K - e model) 
are incapable of predicting the development of secondary flows 
in straight ducts of noncircular cross-section (see Speziale 1987). 
In the computational analysis to be presented, a finite-volume 
algorithm suitable for handling cylindrical geometry is imple
mented to analyze fully developed turbulent flows in straight 
as well as curved square ducts using a recently developed non
linear K — / turbulence model (Speziale, 1987) wherein K and 
/ are specified empirically based on the experimental data of 
Laufer (1951). In the following sections the governing equa
tions, the development of the turbulence model, and the nu
merical procedure will be described in detail followed by a 
discussion of the results and conclusions. 

2 The Physical Problem and Method of Solution 
The problem to be considered consists of the turbulent flow 

of an incompressible viscous fluid in a curved duct of square 
cross-section. Flow in helically coiled ducts may also be ana
lyzed in the same manner so long as the ratio of torsion to 
curvature remains small. The physical configuration and the 
coordinate system used are shown in Fig. 1. 

The flow is generated by a constant azimuthal pressure gra-
1 dP 

dient, G = - - —- (see Fig. 1). It is assumed that the flow 
r 86 

is fully developed so that all flow variables are independent 
of the azimuthal coordinate 6. The fully developed mean ve
locity vector is three-dimensional, i.e., the mean (time-aver
aged) velocity vector v in the cylindrical coordinate system 
employed is of the form v = u (r,z) er+v (r,z) ez + w (r,z) ee 

where e„ ez, and ee denote unit vectors in the r,z and 6 direc
tions, respectively. Here, u and V represent the secondary flow 
while w denotes the primary flow. The governing equations 
consist of the time-averaged equations for conservation of mass 
and momentum, and may be expressed in the following form 
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1 dP 
where G = ———: is the azimuthal mean pressure gradient 

r dd 
which is held constant, p is the fluid density, and v is the 
kinematic viscosity of the fluid which can be neglected for high 
Reynolds number turbulent flows. The components of the 
Reynolds stress tensor r,y appearing in (2)-(4) can be obtained 
through various modeling techniques such as algebraic, one-
equation, two-equation, and second-order closure models 
(Launder and Spalding 1972 and Lumley 1978). Recently, a 
nonlinear two-equation model of the K - I and K - e type 
was developed by Speziale (1987). This model yields more 
accurate predictions for normal Reynolds stress anisotropies 
allowing for the calculation of turbulent secondary flows in 
straight, non-circular ducts. The nonlinear K - I model takes 
the form: 

-pKbij + PKW2ISU + CDpl2 

( 
^im ^mj 

where ( dDj av\ 

dxj 3xJ 
S> = 2 

S,y = 
aSj,. 
at + w s „ 

dv/— 

ax,, 
Skj ~ dx. Ski 

(5) 

(6) 

(7) 

are the mean rate of strain tensor and its frame-indifferent 
Oldroyd derivative, respectively; K is the turbulent kinetic en
ergy, and / is the turbulent length scale. CD and CE are di-
mensionless constants that each assume the value of 1.68 which 
was obtained by Speziale (1987) from correlations with tur
bulent channel flow data. The turbulent length scale / can be 
prescribed algebraically by empirical means, or can be tied to 
the turbulent kinetic energy K and dissipation rate e through 
the relation 

I = 2C„ (8) 

where C^ is a dimensionless constant which is typically taken 
to be 0.09. This forms the basis for the nonlinear K - e model 
for which (5) - (7) are supplemented with modeled transport 
equations for K and e that take the form 
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where ak, at, C£l, and Ce2 are dimensionless constants that are 
usually taken to be 1.0, 1.3, 1.44, and 1.92, respectively. The 
standard K - t model is obtained in the limit as CD, CE — 
0. 

Weaknesses in the performance of the modeled transport 
equations (9) - (10) for K and e have been pointed out numerous 
times in the literature for problems involving swirl and stream
line curvature (see Pope, 1978 and Reynolds, 1987). However, 
several attempts at developing improved versions of these mod
eled transport equations have not met with much success. It 
is a difficult problem that requires a substantial research effort 
to fully resolve. In this paper, we want to examine the efficacy 
of the nonlinear Reynolds stress correction to the K - I and 
K - £ models given by equation (5), for problems involving 
secondary flows with streamline curvature. Hence, we will 
specify K and / empirically, based on experimental data for 
turbulent flow in rectangular channels, in order to determine 
the predictive capability of the nonlinear correction to the 
Reynolds stress independent of the deficiences in the modeled 
transport equations for K and e. 

For fully developed turbulent flow in a curved duct (using 
the cylindrical coordinate system shown in Fig. 1), the com
ponents of the Reynolds stress tensor corresponding to the 
nonlinear K - I model (5) can be approximated as follows: 
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(see Hur, 1988 for more details). In deriving (11)-(16), terms 
that are quadratic in the secondary flow velocity components 
u, D have been neglected since they are small (i.e., 11«, yl 1/ 
11 w II < 0.1 for the computations to be presented herein where 
11 • 11 denotes the maximum norm). As alluded to earlier, the 
turbulent kinetic energy K and length scale / will be specified 
empirically based on the experimental data of Laufer (1951) 
for turbulent channel flow (i.e., for turbulent flow in a large-
aspect-ratio rectangular duct). It will now be shown that the 
data of Laufer can be represented by the power law 

K»> . KA- ( ] 7 ) r - *®' u. 
Ld = * ' ( ! £ (18) 

in the interior of the duct where U0 is the centerline mean 
velocity, d is the half-width of the duct, and ak, ah bk, and b, 
are dimensionless constants. In (17) - (18), S is the mean strain 
rate defined by 

S = (SijSu)
w2 (19) 

In Figs. 2-3, the turbulent kinetic energy and length scale are 
shown as a function of the mean strain rate for three different 
Reynolds numbers. For the following choice of empirical con
stants: 

( 0, Sd/U0 < 0.06 
ak = \ 0.43, 0.06 < Sd/U0 < 0.3 

Co, Sd/U0 > 0.3 

fo.032, Sd/U0 < 0.06 
bk= i 0.11, 0.06 < Sd/U0 < 0.3 

U.064, Sd/U0 > 0.3 

Co, Sd/U0 < 0.04 
a, = \ - 0 . 3 3 , 0.04 < Sd/U0 < 0.25 

C-0 .90 , Sd/U0 > 0.25 

To. 18, Sd/U0 < 0.04 
b, = j 0.063, 0.04 < Sd/U0 < 0.25 

V0.028, Sd/U0 > 0.25 

(20) 

(21) 

(22) 

(23) 

the power laws (17) - (18) do a reasonably good job in col
lapsing the experimental data for a variety of Reynolds num
bers as shown in Figs. 2 - 3 . These empirical constants are the 
values obtained based on a least-squares fit of the data. The 
results are relatively insensitive to mild changes in these con
stants. The power laws (17) - (18) are reminiscent of the ones 
used in viscoelastic flows; of course, the qualitative similarities 
between the mean turbulent flow of a Newtonian fluid and 
the laminar flow of a non-Newtonian fluid have long been 
recognized (see Lumiey 1970). They have the advantage of 
allowing for a substantial reduction in the level of computation 
since separate transport equations for K and e do not have to 
be solved. Furthermore, they provide a more accurate measure 
of K and / for straight ducts than that which can be obtained 
from modeled transport equations for K and e (this allows for 
the study of the performance of the nonlinear Reynolds stress 
model in isolation from the complicating factor of defects in 
the K and e modeled transport equations). Although these 
power laws become less accurate for curved duct flows, the 
errors introduced are moderately small for mild curvatures and 
are probably no worse than those that arise from the standard 
modeled transport equations for K and e. 

The boundary conditions for the secondary flow velocities 
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u and v are set equal to zero at the duct walls. In order to 
avoid resolving the very steep gradients of the azimuthal mean 
velocity vv near the wall for turbulent flows, wall functions are 
used. These wall functions are based conventionally on a pro
duction equals dissipation equilibrium hypothesis and the law 
of the wall for the mean velocity profile (c.f., Amano 1984 
for more details; in the present case, a single log wall layer 
starting at y+ = 30 was used). The boundary conditions for 
the pressure are obtained in the usual fashion (c.f., Patankar 
1980). The mean strain rate is approximated by 

s = 
1(3 
2 Or 0)H(f)T (24) 

which is obtained by neglecting quadratic terms in the mean 
secondary flow. 

A finite volume scheme is used to solve the Reynolds equa
tions (1) - (4), with the nonlinear K — / model given by equa
tions (11) - (16). The method of solution closely follows that 
outlined by Patankar (1980) as modified for the cylindrical 
coordinate system which is used in conjunction with the curved 
duct geometry. In this procedure, the physical domain is dis-
cretized into a finite number of computational cells (see Fig. 
4). At the centroid of each (i.e., at point p), variables such as 
the pressure and azimuthal component of the mean velocity 

_ , /r__ 

— u, t v, • w, p, K, / 

Fig. 4 Computational domain illustrating the staggered mesh system 

are defined: the components of the mean velocity responsible 
for transport in the cross-sectional planes are defined at the 
cell boundaries. The difference equations for all of the vari
ables are then obtained by integration over a control volume. 
A detailed description of the procedure used for obtaining 
these equations may be found in Hur (1988). 

In the present work, the system of algebraic equations which 
result from the differencing procedure used for the governing 
equations (1) - (4) are solved by a successive line under relax
ation (SLUR) procedure with the repeated use of the tridi-
agonal matrix algorithm (Isaacson and Keller, 1970). The details 
of the solution procedure and the algorithm development are 
given elsewhere (Hur, 1988). The following steps constitute 
only a brief summary of the technique: 

(a) A set of pseudo-velocity components (for the secondary 
flow velocity) are obtained from the discretized momentum 
equations by assuming uniform pressure in the computational 
domain. 

(b) These pseudo-velocities are then used to obtain the pres
sure by solving the discretized equation for the conservation 
of mass with the SLUR method. 

(c) Based on the pressure obtained in (b), the secondary flow 
velocity components are obtained from the discretized mo
mentum equations with the SLUR method. 

(d) The correction for the velocity components are obtained 
by evaluating the correction for the mass flux in each cell. 

(e) Using the corrected velocities from (d), the axial velocity 
is obtained by the SLUR method. 

(/) The values of kinetic energy and length scale are then 
computed using the corrected velocity field. 

(g) The procedure is repeated with the updated values of the 
variables until adequate convergence is obtained. 

In addition, a time-averaged stream function \p for the sec
ondary flow can be defined in the following manner 

v = 

rdz 

r dr 

(25) 

(26) 

and can be obtained from the mean velocity field for analyzing 
the secondary flow field. 

All the computations reported in this work, which are sec
ond-order accurate, were performed using a 32 x 32 uniform 
mesh. The choice of the uniform mesh was based primarily 
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Fig. 5 Comparison of fully developed secondary flow streamlines based 
on the nonlinear K— I model in a straight duct at Re = 42000 with the 
experiments of Gessner and Jones (Curve A: Re = 15000) and the com
putations of Nakayama (Curve B: Re = 83000) 

on the nature of secondary flow field encountered in the present 
study. The efficacy of the grid system to emulate the flow field 
was verified by carrying out computations with progressively 
finer grids and monitoring the volume flux, secondary flow 
strength, streamline patterns as well as the velocity profiles. 
For example, some cases were recomputed using a 48 x 48 
mesh and the monitored quantities only differed from those 
obtained on the 32 x 32 mesh by 0.5 percent. The computed 
solution was assumed to have converged to its steady state 
when the root mean square of the average difference between 
successive iterations was less than 10~4 for the velocity com
ponents and pressure. This mesh size, for the analogous prob
lem of rotating duct flows, has yielded results that were within 
3 percent of results obtained from linear stability analyses 
(Speziale, 1985). 

A DEC/VAX-8700 with a processing speed of 6 VUP (i.e., 
VAX Units of Performance wherein the VAX 11/780 is 1 VUP) 
was used for the calculations with 64 bit arithmetic. Each set 
of computations required approximately 35 minutes of CPU 
time corresponding to about 700 cycles consisting of four line 
iterations per each of the three velocity components and pres
sure. In the following section the results obtained by the com
putational technique outlined herein are discussed and 
compared with available experimental and computational find
ings. 

3 Results and Discussion 
The model predictions for turbulent flow in a straight duct 

will be analyzed first, followed by flow in curved ducts. The 
experimental investigations on turbulent duct flow include the 
works of Gessner and Jones (1965), Brundrett and Baines 
(1964), Launder and Ying (1972), and Melling and Whitelaw 
(1976) among others. In the present work, computations were 
performed at a Reynolds number of about 42,000 in ducts of 
square cross-section. This was done to facilitate comparison 
with the results of Melling and Whitelaw (1976), since their 
experiments were performed at the same Reynolds number and 
include laser anemometer measurements of the flow pattern 
with a detailed documentation of the Reynolds stress com
ponents. It should be noted here that Melling and Whitelaw 
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Fig. 6 Comparison of azimuthal velocity contours (iv) for straight duct 
at Re = 42000: nonlinear K—I model; experiments of 
Melling and Whitelaw 

Fig. 7 Comparison of Reynolds stress (T«) contours for straight duct 
at Re = 42000: nonlinear K—l model; experiments of 
Melling and Whitelaw 

Fig. 8 Comparison of Reynolds stress (r,J contours for straight duct 
at Re = 42000: nonlinear K—l model; experiments of 
Melling and Whitelaw 
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Fig. 9 Secondary flow streamlines (\t) and azimuthal velocity contours 
(w) for turbulent flow in curved ducts at Re = 42000 for different curvature 
ratios, (a) Cr = 125, (b) Cr = 62.5, (c) Cr = 31.25, (a) Cr = 15.63. 

(1976) did not evaluate the secondary flow stream function; 
these are obtained from other sources, although at different 
Reynolds numbers (e.g., Gessner and Jones, 1965; Nakayama 
et al., 1983). 

The time-averaged secondary flow streamlines for the straight 
duct of square cross-section is shown in Fig. 5. It should be 
noted that the flow is outward toward the corner and returns 
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Fig. 10 Effect of curvature ratio on secondary flow intensity at Re = 
42000 

to the center along the wall thus forming eight counter-rotating 
vortices. Qualitative comparisons with the experimental results 
of Gessner and Jones (1965) for a Reynolds number of 150,000 
and the computational results of Nakayama et al. (1983) for 
a Reynolds number of 83,000 are possible as shown in Fig. 5. 
The computations by Nakayama et al. (1983) are based on the 
algebraic stress model developed by Launder and Ying (1972). 
It can be seen here that the present model agrees with the 
experimental results of Gessner and Jones (1965) in the sense 
that it also exhibits weaker secondary flow velocities near the 
center of the duct. 

Due to the secondary flow associated with the turbulence, 
the axial velocity profile for w is distorted, as shown in Fig. 
6. Comparison with the experiments of Melling and Whitelaw 
(1976) is also shown in Fig. 6 and the results indicate quali
tatively good agreement. The computed values of the Reynolds 
shear stress will now be compared with the experiments. The 
results for the two shear stress components, T„ and rn (where 
x and y are the horizontal and vertical coordinates in the plane 
of the secondary flow and z is the coordinate normal to this 
plane) are shown in Figs. 7 - 8. As can be seen from these 
results, the computed values of TXZ and rn are in good agree
ment with the experimental findings. 

The computations were then extended to flow in curved 
ducts. Figures 9(a) - (d) show the evolution of the flow field 
as the curvature ratio Cr (i.e., the ratio of the radius of cur
vature to the duct width) increases for a Reynolds number of 
about 42,000. In the case of curved ducts, the interaction 
between the centrifugal force and the force induced by the 
normal Reynolds stress differences (due to the anisotropic tur
bulence) characterizes the secondary flow. However, as can be 
seen from Figs. 9(a) - (b), even for very loosely coiled ducts 
(i.e., ducts of large curvature ratio) the fully developed flow 
field is characterized by a predominately double vortex struc
ture which is representative of a flow field dominated by cen
trifugal effects. There is, however, a pair of weak counter-
rotating vortices near the outer wall of the duct. When the 
curvature ratio is decreased (i.e., as the duct is coiled tighter), 
the centrifugal effects gain further dominance, and the vortices 
near the outer wall and, hence, the secondary flow gain strength 
and assume a four-vortex structure as shown in Figs. 9(c) - (d). 
The effect of an increase in the secondary flow intensity on 
the azimuthal velocity profiles can also be observed in Figs. 
9(a) - (d). As can be seen from the constant velocity lines, 
there is a substantial outward shift of the azimuthal velocity 
field with a decrease in the curvature ratio. In practice the 
secondary flow structure assumes an essentially eight vortex 
structure for extremely loosely coiled ducts with Cr > 1000. 
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Unfortunately, direct comparisons cannot be made with pre
viously conducted experiments (e.g., Chang et al., 1983) since 
those experimental studies involve developing flow or large 
curvatures for which Cr = O(l). 

In Fig. 10, the associated increase in the secondary flow 
intensity with a decrease in the curvature ratio (i.e., increase 
in duct curvature) is shown. From this figure, it is clear that 
curvature can increase the secondary flow intensity (defined 
as \u, V, Imax/w'max) from 0.02 to 0.10. 

4 Conclusion 
A numerical study of turbulent secondary flows in straight 

and curved ducts of square cross section has been conducted 
using the nonlinear K — / model of Speziale (1987). The results 
are shown to compare well with the detailed laser-Doppler 
anemometry measurements of Melling and Whitelaw (1976) 
for fully developed turbulent flow in straight ducts of square 
cross-section. Here, the model predicts an eight vortex sec
ondary flow consistent with experimental observations. For 
curved ducts, the model predicts a double vortex secondary 
flow for mild to moderate curvature and a four-vortex sec
ondary flow for moderate to strong curvature. These regimes 
are analogous to those that are observed in laminar curved 
duct flows (c.f., Cheng, Lin, and Ou 1976) with one major 
exception: for the laminar case there would be no secondary 
flows in straight ducts (i.e., in the limit as Cr — oo the laminar 
flow is unidirectional). 

In our opinion, the calculations presented in this study (as 
well as the more detailed results of Hur 1988) indicate that the 
nonlinear K — / and K — e model has the promise to yield 
more accurate predictions for curved turbulent flows than the 
standard eddy viscosity models. This is particularly true of 
curved turbulent flows with large Cr since, for this case, the 
centrifugally generated secondary flow will significantly in
teract with the weak eight vortex secondary flow that occurs 
in the absence of curvature — an effect which cannot be de
scribed by the standard K — e model. The nonlinear two-
equation model could provide a useful alternative to a second-
order closure model for those applications where savings in 
computational expense is a high priority. Future research should 
be directed toward the generation of a full nonlinear K — e 
model solution to the curved flow problem. Invariably, this 
will require a careful examination of the modeled dissipation 
rate transport equation to properly account for curvature ef
fects. With such improvements, the nonlinear K — e model 
could have a variety of important technological applications 
to turbulent flows involving streamline curvature. 
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A Reinterpretation of the Results 
of the Moby Dick Experiments in 
Terms of the Nonequilibrium 
Model 
The topological pattern of the set of measured pressure distributions included in 
the Moby Dick series of experiments on critical flow through a slender channel 
provided with a throat does not agree with that expected on the basis of the rigorous 
mathematical theory which predicts the appearance of a singular point, most likely, 
of a saddle point at or near the throat. This is considered to be paradoxical. The 
paper provides an alternative interpretation of these results. The Moby Dick ex
periments have clearly demonstrated the profound influence of the existence of 
metastable conditions near the flash point. For this reason, among others, the paper 
undertakes a re-evaluation of some of the Moby Dick results in terms of the 
nonequilibrium model first suggested by L. J. F. Broer in 1958 for use inflows of 
chemically reacting gases. Since the Moby Dick data contain measurements of the 
distribution a(z) of void fractions, it becomes possible to calculate local relaxation 
times, d[a(z)], and so to close the system of differential equations of the model. 
Extensive numerical calculations reproduce the measured pressure distributions with 
an error of6-10 percent at most. More importantly, the topological features of the 
calculated pressures, P,/,(z), turn out to be identical with the measured ones, Pra(z). 
The most important, and totally unexpected, result is that the flow in the Moby 
Dick channel remained subcritical everywhere. In particular, the channel was not 
choked at the throat. Since the mass-flow rates were independent of back-pressure, 
it is concluded that the flows were choked at or near the exit. The paper advances 
additional reasons for the feasibility of this alternative interpretation, but emphasizes 
and re-emphasizes its provisional nature. 

1 Introduction 
The classical measurements of critical flow-rates and of their 

dependence on the critical pressure and critical void fraction 
performed at the Centre d'Etudes Nucleaires in Grenoble 
(France), known as "Moby Dick," [1], have served as a basis 
for the understanding of critical two-phase, single-component 
flows ever since their publication. These experiments have 
clearly demonstrated the profound influence exerted on such 
flows by the time-lag introduced into the process of internal 
evaporation as the pressure drops. The time-lag is introduced 
into the flow by the system's failure to begin evaporation when 
saturation conditions are reached at the flash point introducing 
metastable conditions. This manifests itself by the fact that 
the process of homogeneous nucleation (flash point) occurs at 

"Permanent address: Institute for Fluid Flow Machinery, Polish Academy of 
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a temperature which exceeds the saturation temperature by as 
much as 2-3°C. 

The experiments were carried out in a channel consisting of 
a straight portion followed by a conical expander provided 
with a 7 deg included-angle divergence. The exit from the 
divergent cone was connected to the condenser by a con
siderable length of constant-area piping. The channel profile, 
reproduced from [1], is shown in Fig. 1, and the connections 
at both its ends are shown in Fig. 2. 

The evaluation of these experiments assumed that critical 
conditions occurred at the throat, presumed to exist at the 
junction of the conical section to the upstream constant-area 
channel. Measurements of pressure and void fraction, as func
tions of longitudinal distance, were reported. The authors in 
Grenoble emphasized that the channel shape was carefully 
designed to secure that a one-dimensional mathematical de
scription of the flows created in it should apply. A close ex
amination of the published diagrams fails to reveal a 
topological-geometrical pattern of the curves expected in the 
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Fig. 1 The channel used in Moby Dick experiments 

neighborhood of the cross-section in which critical flow is 
presumed to occur. 

In a recent paper, [2], the authors have demonstrated that 
a transition from subcritical to supercritical flow need not 
occur at the narrowest cross-section (throat) and must be as
sociated with the appearance of a singular point (saddle or 
nodal point) in the phase space of the relevant mathematical 
model which reliably describes the physical process. This con
clusion is independent of the number of ordinary nonlinear 
differential equations (i.e., of the number of components in 
the vector of dependent variables) in the model, as long as a 
one-dimensional approximation is applicable. 

CONDENSER 

Fig. 2 Experimental arrangement 

A typical pressure profile is shown in Fig. 3 which represents 
six runs at the same upstream conditions and mass-flow rate, 
but at different back-pressures. The diagram also plots the 
variation of the void fraction, measured by gamma-ray ab
sorption. It seems that the upstream branch cannot correspond 

B = function defined in equation 
(4g) 

/ = friction factor 
G = specific mass flux 
h = enthalpy 

m = mass-flow rate 
P = pressure 
R = radius of cross-section 
T = temperature 
v = specific volume 
iv = velocity 
x = dryness fraction 
x = equilibrium dryness 

Z = length coordinate 
a = void fraction 
7 = factors defined in (5b, c, d) 
A = characteristic determinant of 

the system of equations 
(la-d), see equation (4/) 

AT = superheat at flash point 
6 = relaxation time 
p = density 
a = vector of dependent properties 
r = dummy independent variable 

Subscripts 
a = outside exit 

crit = critical 
e = at channel entrance 

ex = experimental 
/ = at flash point 
/ = at throat 

th = calculated by the model 

Superscripts 
" = property of vapor on satura

tion line 
L = pertains to nonequilibrium 

temperature of liquid 
* = critical state 
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Fig. 3 Typical result. 1. run 423, G = 4383 kg/m2s, P, = 1.359 bar, P, 
= 1.381 bar, T = 121.9°C; 2. run 424, G = 4357 kg/m2s, P, = 1.430 bar, 
P. = 1.451 bar, T = 121.8"C; 3. run 425, G = 4355 kg/m2s, P, = 1.494 
bar, P, = 1.512 bar, T = 121.7°C; 4. run 426, G = 4360 kg/m2s, P. = 
1.531 bar, P, = 1.551 bar, T = 121.8°C; 5. run 427, G = 4345 kg/m2s, P, 
= 1.619 bar, P, = 1.636 bar, T = 121.8°C; 6. run 428, G = 4331 kg/m2s, 
P, - 1.712 bar, P, = 1.724 bar, T = 121.8°C. 

to the usual saddle point through which a transition from 
subcritical to supercritical flow would be expected to occur, 
(nodal points are observed so rarely that we can ignore them 
for the time being), in spite of the fact that the mass-flow rate 
fixed by G = (4360 ± 0.6 percent) kg/m2s remained the same 
at all six back-pressures. 

Thus the juxtaposition of this mathematical conclusion and 
the experimentally produced graphs, of which the above is a 
typical example, results in an apparent paradox. The present 
paper will explore the possibility of an interpretation of results 
which differs from the hitherto accepted one; it is based on 
the hypothesis that nonequilibrium phenomena are dominant 
and analyzes the results in terms of the nonequilibrium model 
first proposed by L. J. F. Broer [3] in 1958. 

2 The Model 
The homogeneous relaxation model consists of the usual 

three conservation laws which are supplemented with an 
evolution equation for the phase transition in terms of a re
laxation time 6, which characterizes the vapor-generation rate. 
The governing equations are as follows: 

^ - O * -luGR'/R, 
dz dz 

(la) 

dP dw „ , 
+ G -fvG2/R, 

dz dz 

dh dw + w = 0 
dz dz 

dx x— x 

dz Ow 

(lb) 

(Ic) 

(Id) 

Here w denotes the barycentric velocity, v is the specific volume 
of the mixture, G = w/v is the specific mass flux, R (z) is the 
radius of a cross-section and R' (z) is its derivative. Further, 
P denotes pressure,/is the friction factor, h the enthalpy, and 

x is the actual dryness fraction, whereas x = x(P, ft) denotes 
that dryness fraction which would exist in an equilibrium mix
ture at the local pressure and enthalpy. Finally, 6 denotes the 
local relaxation time which characterizes the rate of mass trans
fer (caused by an existing temperature difference) between the 
phases. 

To the preceding set there must be added the equation of 
state 

h = h(v,P,x) = xh"{P)+ (l-x)hL[P, T^(P, v)]. (2) 

The function h" (P) represents the enthalpy of the vapor on 
the vapor-pressure line which corresponds to the local pressure 
P; 7* is the nonequilibrium temperature of the liquid. At the 
flashpoint T1 > T(P) and the assumption underlying the 
equation of state (2) is that only the liquid exists in a metastable 
state, an assumption which seems to be consistent with ex
periment. 

The preceding model neglects the slip between the phases 
since we found slip to be of secondary importance to non-
equilibrium effects, 7* jt T(P). To complete the model, the 
superheat, AT, at flashing and the local relaxation times, 0(z), 
are needed. In the analysis that follows, AT was determined 
directly from the graphs included in [1]. In the Moby Dick 
series studied here AT ranged from 2.66 to 2.91 °C. 

Evidently, the relaxation time 6 could not be measured and 
no theory exists which would make it possible to determine it. 
For this reason we have taken advantage of the availability of 
measured values of void fraction to calculate 6[a(z)] and em
ployed the model, together with the known value of flow-rate, 
to calculate a "predicted" pressure distribution. This was then 
compared with experiment. In this manner, we performed a 
test of validity of the model. 

3 A Reservation 
In view of the unanticipated result of our calculations, which 

will be presented later in Section 6, it is necessary to insert a 
word of caution at this point. We do not claim that the cal
culations represent more than a possible interpretation con
tained in the message suggested by the Moby Dick series of 
measurements; the importance of these calculations resides 
entirely in the fact that they satisfactorily resolve the paradox 
identified in the Introduction and seem to give us an insight 
which is unobtainable from the experiments directly. 

4 The Working Equations 
The system of equations (1) can be put in the following 

autonomous form 

where 

A = 

dz 
k, 

dv 
— = 2vAR'/R-B, 
dr 

dw 
— = -pwB, 
dr 

dP 
— = PhV

2(B-fvA/R), 
dr 

dx x~ x 

dr wd 

— +P2w2 

dv J p,.v 

v- (SL 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

(4f) 
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Fig. 4 Critical speeds as a function of void fraction for P = 1.7 bar. 
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Fig. 5(a) Experimental results for run 400. G = 6526 kg/m2s, P, = 
1.227 bar, P. = 1.232 bar, 7 = 116.7°C. P „ - measured pressure distri
bution, in bar; Plh - pressure distribution calculated on the basis of the 
relaxation model, in bar; <*,„ - measured void fraction; 0 - relaxation time 
calculated on the basis of the relaxation model, in s. 

- s 

- ( - ) 
\ dx ) PiV 

x-x 
(4g) 

and T is a dummy parameter. 
The set of equations (4a-g) can be used to solve for the 

vector a [z, u, w, P, x] given initial conditions, provided d is 
known. As stated earlier, we have applied an inverse procedure. 
Knowing the measured void fraction a(z), we can eliminate 
the dryness fraction x = av/v" from the system of equations, 
and use equation (4e) to determine the relaxation time 
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Fig. 5(b) Experimental results for run 401. G = 6465 kg/m2s, P, = 
1.323 bar, P, = 1.337 bar, T = 116.6°C. P „ - measured pressure distri
bution, In bar; P,h - pressure distribution calculated on the basis of the 
relaxation model, in ban « „ - measured void fraction; $ - relaxation time 
calculated on the basis of the relaxation model, in s. 
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Fig. 5(c) Experimental results for run 402. G = 6496 kg/m2s, P, -
1.456 bar, P, = 1.469 bar, T = 116.7°C. Pex - measured pressure distri
bution, in bar; Plh - pressure distribution calculated on the basis of the 
relaxation model, in ban a„ - measured void fraction; 6 - relaxation time 
calculated on the basis of the relaxation model, in s. 
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where 

Yi 72 , and 73 = av 

(v")2 

dv" 

dP 
(5b,c,d) 
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Table 1 Experimental conditions and calculated results for 
runs 400, 401 and 402 of the Moby Dick series. 

Run 
Mass flow m, kg/s 
(or 2.04±0.5 percent) 

Specific flow rate at inlet G, kg/m2s 
(or 6495 ±0.5 percent) 

Back-pressure Pa, bar 
Location of throat z„ mm 
Location of flash point zf, mm 
(or 201 ±3 percent) 

Location of throat with respect 
to flash z, - Zf, mm 

Flow velocity at throat w„ m/s 
Mach number at throat Ma, 
Largest flow velocity H'max, m/s 
Location of ivmax with respect 
to flash point z, mm 

Location of exit with respect 
to flash point ze, mm 

400 
2T55 

6526 

1.232 
295 
194 

101 

8.96 
0.256 
18.9 
301 

301 

401 
ZIT3 

6465 

1.337 
295 
206 

89 

8.80 
0.250 
14.9 
243 

289 

402 
ZD4 

6496 

1.469 
295 
204 

91 

8.93 
0.255 
10.6 
239 

291 

5 Analysis 
It was emphasized in Section 2 that no reliable expression 

for the relaxation time is available.1 Before applying the 
nonequilibrium model with the values 6(z) calculated by the 
procedure described in Section 4, we made calculations with 
the aid of the homogeneous model, [2], and the slip model, 
[5], and ascertained that each of these models failed in that 
both predicted a critical speed which was lower than the flow 
velocity at the flash point. 

By contrast, the results of the procedure described here were 
generally acceptable, as will be detailed in the next section, 
and convinced us that the use of this model led to results which 
were consistent with the measurements. 

The diagram in Fig. 4 represents the critical velocity as cal
culated by the homogeneous equilibrium model (curve 1) and 
the nonequilibrium model (curve 2) in terms of the void fraction 
a for an entrance pressure of P0 = 1.7 bar. The former are 
much lower than the latter and than the velocities at the throat 
listed in Table 1, to be discussed in the next section. 

6 Results 

The preceding algorithm was programmed on a computer 
and calculations were performed on runs 400, 401, and 402 of 
the Moby Dick series [1]. The results are presented graphically 
in Figs. 5(«, b, c) under the conditions specified in the captions 
and in Table 1. The back-pressure Pa, set at the exit n — n (Fig. 
2), was adjusted by varying it in the condenser. It is, thus, 
important to note that the mass-flow rate m remained essen
tially constant, even though the back-pressure varied by about 
20 percent. This suggests that the flow was choked in all three 
cases, and the only detail subject to interpretation is to decide 
whether it was choked at the throat, at some downstream cross-
section or at the exit. Our calculations seem to favor the latter 
interpretation, because they also support the hypothesis that 
the flow was subcritical everywhere. 

More specifically, at all points in our calculations the de
terminant was positive (A > 0), indicating that the flow velocity 
was lower than the local sound speed. 

This was the most essential, and totally unex
pected, result of our research. 

The flow velocity at the throat and the value of the corre
sponding local Mach number are listed in Table 1; they are all 
lower than unity. We recall here that the variation of sound 
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'The correlation given by E. G. Bauer et al. [4], apart from not being di-
mensionally homogeneous, failed to reproduce the measured pressure distri
butions, when used in our program. Frequently, the errors were of the order of 
100 percent. 

Fig. 6 Pressure distributions calculated along the Moby Dick channel 
with the inlet conditions and 0(a) relation for run 400 obtained by the 
inverse method. 1. m = 0.964 mcli,; 2. m = 0.997 m„„ ; 3. m = 1.003 
mcril; 4. m = 1.018 mcth. Note the closeness of the mass-flow ratios of 
curves 2 and 3 which bracket the critical. 

velocity with void fraction, illustrated in Fig. 4, reinforces these 
conclusions. 

The calculated pressure distributions, P t h , in Figs. 5(«-c) 
appear to be significantly lower than the corresponding meas
ured pressure distribution, Pex, in the downstream section of 
the channel. However, the reader should notice the false zero 
in the diagrams. These differences are no more than of the 
order of 6-10 percent and can reasonably be attributed to the 
uncertainties in the measurement of void fraction. The essential 
feature from the point of view of the thesis represented in this 
paper is that their topological aspects agree completely. 

The computer program made it possible to calculate the 
variation d(z) of the relaxation time. The corresponding curves 
have been drawn in Figs. 5(a, b, c). The values thus obtained 
are of the order of Is for small values of void fraction, de
creasing monotonically as a increases. The curves change slope 
near 6 = 0.1s and at a point which corresponds to a between 
0.3 and 0.35. Such values of void fraction are commonly as
sociated with a transition in the flow regime from bubble to 
plug or froth flow. The change in regime results in a rapid 
increase in the interfacial area between the phases which seems 
to favor fast evaporation. 

In further support of the claim that the throat was not the 
seat of critical conditions, we paid special attention to the 
velocities which result from the necessary condition, A = 0, 
for choking. These yielded a minimum of vv* = 26 m/s at a 
= 0.5 which should be compared with the maximum computer 
flow velocity, >vmax = 10.6; 14.9; 18.9 m/s listed in Table 1. 
These maximum flow velocities, all lower than the predicted 
critical velocity w", always occurred downstream from the 
throat in a cross-section just upstream from the exit. It is 
difficult to escape the conclusion that the data suggest that the 
flow was choked either at or close to the junction with the 
condenser. In order to gain additional confidence in the suit
ability of the nonequilibrium model for the analysis of two-
phase flows of a single substance, we have performed calcu
lations on the Moby Dick channel with the data of run 400, 
Fig. 5(a). The (9(a) relation which resulted from applying the 
inverse procedure was used as a closure for system (4a-e), and 
integrations were performed at two supercritical and two sub-
critical mass-flow rates. The resulting pressure curves are shown 
in Fig. 6. These curves demonstrate that the pattern of tra
jectories resulting from the nonequilibrium model is topol
ogical^ equivalent to that presented in [2] for the homogeneous 
model, supporting our claim that the critical point must be a 
saddle-type singularity. In contrast to results obtained with the 
homogeneous model, however, the critical point is no longer 
near the throat as evidenced by the turning point in Fig. 6 at 
z = 0.435 m. 

It would, of course, be possible to locate the saddle point 
from first principles, and to trace the critical trajectory by 
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reverse integration, but we have concluded that doing so in 
the present example would exceed the scope of this paper. 

7 Interpretation 

It is re-emphasized that the present paper has not created 
more than an alternative interpretation which can be put on 
the Moby Dick experiments. According to this, so far only 
very tentative view, the Moby Dick experiments did not pro
duce critical and supercritical flow conditions, but only flows 
which remained subcritica) everywhere. The principal reasons 
for such a possible point of view are: 

(a) Absence of any evidence that the ' 'portrait" of solutions 
in the P,z plane contains a singular point (saddle or node). 

(b) Absence of any evidence that flow at the narrowest point 
(throat) was critical. 

(c) Absence of a common segment in the pressure distri
bution in Fig. 3 (and similar) when the back-pressure is varied 
at a substantially constant flow-rate (4360 m/s ± 0.6 percent); 
such a pattern is suggested by all one-dimensional mathemat
ical models. 

(d) Absence of any evidence of the occurrence of normal 
or oblique shock waves which would be expected if critical 
flow was produced at the throat or closely downstream from 
it. 

(e) Absence of flow velocities which are larger than the 
critical velocities calculated with the aid of the necessary con
dition A = 0. 

if) Closeness of the location of the maximum velocity to 
the exit near the very wide tube leading to the condenser. 

All preceding features are consistent with the view that the 

channel was choked, but that the critical cross-section was 
close to the condenser. 

Conclusion 
In conclusion, it must be emphasized once more that the 

line of reasoning, and the underlying analysis, are of a qual
itative nature only. The tentative suggestions are advanced with 
the hope that other workers in the field will reopen the problem 
for further rigorous study. 
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Corrosion of Pure Copper in 
Flowing Seawater Under 
Cavitating and Noncavitating Flow 
Conditions 
This paper investigates the corrosion of pure copper in flowing seawater under 
cavitating and non-cavitating flow conditions. Experiments were conducted in a 10 
mm x 20 mm working section with a 60 deg symmetrical wedge cavitation source. 
A copper sidewall specimen was held under potentiostatic control and its average 
corrosion current was measured under different flow conditions. To facilitate a 
detailed investigation of the flow field upon the current distribution over the specimen 
surface, further tests were carried out using a sidewall incorporating 24 mini-elec
trodes. Apart from some indication of cavity shielding, corrosion currents were little 
affected by the presence of cavitation during the incubation period (when no material 
was being removed). However, under similar cavitation conditions (but with ma
terial removal under steady-state erosion conditions) the corrosion currents ap
proximately doubled. 

Introduction 
Many components in marine environments are subjected to 

high velocity seawater flows which can also be cavitating. Ex
amples of such components on board a ship include the pro
pellers, pumps, valves, and some pipe fittings. It is known that 
when both corrosion and cavitation erosion act together on 
such components, the resultant damage rate is greater than the 
sum of the individual damage rates for erosion and corrosion. 
The accelerating mechanisms which produce this effect (a syn
ergistic effect) are not understood. Therefore, a research pro
gram has become necessary to provide information to ship 
designers and maintenance engineers to keep through life costs 
of ships to a minimum. 

An earlier paper [I] by the authors reports on pure erosion, 
pure corrosion and combined cavitation erosion and corrosion 
tests from the early stages of the program. From these tests a 
synergistic effect was found to be present on copper when both 
cavitation erosion and corrosion act together. From the depth 
of penetration measurements made, the synergistic effect was 
found to be most marked when cavitation erosion occurs in 
the presence of mild corrosion. Under these conditions the 
depth of penetration is double the sum of the expected pure 
erosion and pure corrosion depths. The mechanism of this 
synergistic effect was not made clear by such tests, thus re
quiring further investigations which are reported in this paper. 

The synergistic mechanism could be either an enhancement 
of the corrosion or an enhancement of the cavitation erosion. 

In this paper the influence of cavitation on corrosion currents 
is investigated. The corrosion currents measured are converted 
to a depth of penetration and comparison made with the actual 
depths, obtained by profilometry measurements. If good 
agreement is found, corrosion currents could be used to meas
ure depth of penetration. By monitoring the corrosion currents 
over the surface of a specimen subjected to various cavitation 
conditions it is hoped that a clearer indication to the mechanism 
of the synergistic effect would result. 

Before investigating the synergistic mechanism in greater 
detail, it is necessary to understand the corrosion process. For 
pure copper corroding in natural seawater, the following re
actions are likely. These reactions apply to flowing or static 
conditions and also apply whether the copper is freely cor
roding or under potentiostatic control. 
Anodic dissolution of copper: 

Cu —> Cu++e~ (1) 
Further reactions depend on whether a passive film is pres

ent. Efird [2] concludes that on an unfilmed site, Cu20 is 
formed by precipitation: 

2Cu++4Cr — > 2CuCl2" (2) 
followed if conditions allow by 

2CuCl2 + H20 — > Cu20 + 4Cr + 2H+ (3) 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
January 10, 1989. 

2CuCl2 - + 20H ~ — > H20 + Cu20 + 4C1" (4) 
Equation (2) describes the formation of copper-chloro com

plex CuCl2~. The diffusion of this ion from the electrode/ 
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seawater interface to the bulk solution is the step which controls 
the rate of dissolution. 

The corresponding cathodic reaction to the above anodic 
reactions is the reduction of oxygen: 

0 2 + 2H20 + 4e~ — > 4 0 H " (5) 

Lai and Thirsk [3] were the first to report that the anodic 
dissolution of copper in static NaCl solutions exhibit pure 
concentration polarization and predicted anodic Tafel slopes 
of 60 mV/decade. The effect of flow over the corroding surface 
is to increase the anodic Tafel slope because of the increased 
diffusion of CuCl2~ ions. The diffusion of the ions away from 
the surface will increase as the flow increases, the reaction 
becomes more activation controlled with a Tafel slope of 120 
mV/decade. Although some research has reported Tafel slope 
values at differing velocities, only relatively low velocities 
( < 3 m/s) have been investigated. In some engineering appli
cations, higher velocities are encountered such as components 
on-board ships (pumps, valves and pipework) and ships' pro
pellers. Such components are also subjected to cavitation at
tack with a very much increased damage rate. Velocities up to 
14.7 m/s in the test section upstream of the cavitation source 
(corresponding to approximately 30 m/s across the surface of 
the specimen) are investigated in this paper under both cavi-
tating and non-cavitating conditions. 

The effect of high flow rates on the anodic polarization 
branch of copper in seawater using a corrosion cell mounted 
in a cavitation flow tunnel is reported. Both noncavitating and 
cavitating conditions are established within the same corrosion 
cell. The influence of cavitation can therefore be investigated 
to determine whether its presence increases the corrosion cur
rent. This will allow the dependence of corrosion current on 
cavitation conditions to be made with the determination of its 
roll in the synergistic effect between cavitation erosion and 
corrosion [1]. 

Experimental Method and Apparatus 
Initial work has concentrated on obtaining the corrosion 

currents from a complete specimen surface area (17 cm2). The 
tunnel used for these experiments has been previously described 
in reference [1]. High conductivity copper (99.9 percent Cu) 
specimens were used which acted as the working electrode of 
a three electrode corrosion cell mounted in the cavitation tunnel 
under the control of a Hi-Tek potentiostat DT 2101. A similar 
sized piece of cupro-nickel (Cu/Ni 70/30) was mounted directly 
beneath the working electrode to act as the secondary electrode 
(see Fig. 1). As the required result of potentiostatic control is 

to hold the potential of the electrolyte as near to the working 
electrode surface as possible at a demanded potential, the po
sition of the reference (Ag/AgCl type) electrode is critical. The 
potentiostat monitors the potential of the tip of the reference 
electrode capillary and therefore this must be positioned as 
near to the working electrode surface as possible. This has 
been achieved in the present work by inserting the capillary 
tube through a hole in the copper specimen thereby flush 
mounting the tip of the capillary with the specimen surface. 

The copper specimen, freshly polished with 600 grade emery 
paper, was mounted into the tunnel and allowed to stand in 
static seawater for several minutes on open circuit. This allowed 
the initial rapid build up of oxidation to occur before polar
ization curves were obtained. It was then connected to the 
potentiostat and the potential adjusted until the cell current 
was zero. This potential is known as the corrosion potential 
(.Ecorr) and for copper in static seawater has a value of about 
- 220 mV re Ag/AgCl. Once a steady value has been obtained, 
the potential was adjusted by 10 mV in the cathodic direction 
allowing the cell current to settle for one minute before noting 
the cathodic current and proceeding to make the potential more 
cathodic by a further 10 mV. This procedure was repeated 
until a range of 200 mV had been covered. The potential was 
then set to the equilibrium (£"corr) and then the anodic branch 
of the polarization curve was measured in the same way, mov
ing in 10 mV steps anodically each minute, i.e., a sweep rate 
(v) of 10 mV/min, with the corresponding anodic current noted. 
Readings were obtained up to a potential of E = 0.100V (re. 
Ag/AgCl). 

To avoid the influence of oxide layers (formed during the 
anodic branch) on the cathodic readings the cathodic branch 
was investigated first. Whether the cathodic branch was ob
tained before or after the anodic branch had no effect on the 
anodic curve. 

Polarization curves were obtained under no flow (v-0 
m/s) and flowing conditions (v = 2, 8, 14.7 m/s) in the cav
itation flow tunnel. At v = 14.7 m/s both noncavitating and 
cavitating conditions were investigated. A fairly low cavitation 
intensity (X = 3.0, a = 6.00 where X is the nondimensional 
cavity length as shown on Fig. 2) was chosen with a large 
erosion area giving a mass loss rate of 4.1 mg/hr. Polarization 
curves in the incubation period (no mass loss period) and 
steady-state erosion periods (linear period of cumulative mass 
loss versus time) were investigated. 

The measurements of current in the earlier experiments re
ported in [1] are an integration of the current distribution over 
the whole specimen surface. It would be advantageous to be 
able to measure this current distribution to enable local current 
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Fig. 1 Schematic diagram of the lest section and corrosion cell 
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Fig. 3 Schematic of data logging eqUipment for multl·electrode ex·
perlments

As the Analogue to Digital (AID) converter used in the
experiments was limited to 8 channels, only 8 of the mini
electrodes could be logged at anyone time. Hence, a switch
was required to enable sets of 8 electrodes to be logged suc
cessfully. Once all the electrodes have been logged the current
data is stored on floppy disc. From the switching box the signal
travels to the current followers. A multi-way current follower
was used. Care was taken to connect together the earths of
the current follower box and of the potentiostat to eliminate
floating earth problems. The circuit for each current follower
is illustrated in Fig. 4.

As Fig. 4 shows, the current followers have several gain
settings which can be used, depending on the magnitude of
the current being measured. The outputs of the current fol
lowers are connected to an RC Low Pass Filter box which, in
turn, is connected to the CIL type AID converter under control
of the PET 1 computer. The AID converter has also three gain
settings giving 0.1, 1 or 10 Volts full scale deflection. The gain
settings selected on both current followers and the AID con
verter are entered into the computer program before each ex
periment.

The second Pet Computer (PET 2) logs the main copper
electrode current from the output of the potentiostat. Before
the signal enters the 3-D type AID converter it passes through
an active 5 Hz Low Pass filter and is then amplified by 10.
The signal requires amplification as the 3-D type AID converter
has only 8 bit resolution. The software for this data logging
has no data storage facility and therefore requires the exper
imenter to note current readings from the computer monitor.

·.. - -- - --
'"< C J C

C ~ •
:I" ~ , ~

Fig. 2 Multi-electrode specimen

changes to be investigated. It is important that the influence
of differing flow conditions on the current distribution is mon
itored. For example, the effect of a cavitating flow compared
with a non-cavitating flow on the current distribution. Both
cavitating and non-cavitating flow tests were carried out with
the 60 deg symmetrical wedge in position; cavitation being
suppressed by increasing the static pressure in the tunnel. The
localized currents in the areas of combined cavitation erosion
and corrosion are of particular interest.

In order to be able to measure the current distribution, the
specimen surface must be split up into smaller individual elec
trically insulated electrode areas. These smaller or mini-elec
trodes must be flush mounted in the specimen surface to avoid
affecting the hydrodynamic conditions. To be able to repro
duce the current distributions of the above experiments, the
mini-electrodes must be mounted into a similar specimen to
that used previously. Mounting the mini-electrodes into the
specimen ensures the electrodes monitor the local surface cor
rosion rates, the specimen being connected to the potentiostat
as before with the potentiostat recording the corrosion current
over the specimen surface area, referred to as the Main Elec
trode (M.E.) current. This does not include the mini-electrode
surface areas. The individual mini-electrode currents are meas
ured using a current follower circuit connected to each mini
electrode. Details of the circuit are given later.

The mini-electrodes were made from insulated copper trans
former winding wire, the outside diameter of the wire chosen
being 1.25 mm (insulation stripped). To enable the current
distribution over the specimen surface to be measured, 24 mini
electrodes have been used. The arrangement of these electrodes
over the specimen surface is illustrated on the photograph in
Fig. 2. The mini-electrodes have been positioned such that,
under high cavitation intensities (A = 1.6, a = 6.22, which
corresponds to perceived peak noise in the laboratory). Four
of the electrodes are in the primary cavitation damage area
and two are in the secondary cavitation damage area, see Fig.
1. The remaining electrodes form three lines across the spec
imen width, spanning the specimen length. A standard copper
specimen has been drilled and the winding wire glued into the
holes with "Araldite." An electrical connection to the main
copper electrode was made through a length of studding screwed
into a tapped hole on the reverse side of the specimen. A special
Delrin specimen holder was designed to seal the mini-electrode
specimen in place in the Cavitation Erosion Corrosion Tunnel.

Figure 3 is a schematic of the data logging equipment used
for the mini-electrode tests. For fast data acquisition, the cur
rent readings in micro-amps were logged by one of the Pet
Computers (PET 1) and then stored on floppy disc. Further
software plots out currents for a given mini-electrode against
test duration for analysis of the longer duration experiments.
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Fig. 6 Polarization curves for copper in seawater for v = 0 mls and v
= 8 m/s obtained from the C.E.C. tunnel corrosion cell
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Fig. 7 Anodic polarization curves for copper In seawater at v = 14.7
m/s under various cavitation conditions
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branch is affected by diffusion of oxygen to the electrode
surface and is therefore nonlinear. The influence of flow (i.e.,
v = 8 mls) for both cavitating and noncavitating flow is also
shown in Fig. 6. Imposing a flow over the specimen surface
ensures the straightening of the cathodic branch curve and the
shifting of the curves to the right on the E versus log i plot.
The influence of cavitation is less easily seen with no visible
effect on the anodic branch though some increase in current
on the cathodic branch is seen. It should be noted that the
cavitation conditions studied were set up for a very short period
which meant that the specimen surface was only lightly dam
aged and remained within the incubatian period.

A further experiment to look at the effect of cavitation on
the anodic branch during steady state erosion (SSE) was also
carried out. The results are presented in Fig. 7. A velocity of
v = 14.7 mls was studied. As seen in Fig. 7, the influence of
cavitation during incubation is minimal when comparing the
noncavitating curve with the cavitating curve during incuba
tion. However, during SSE a measurable increase in the current
occurs indicating that the synergistic effect is most likely to be
measurable during SSE rather than during incubation.

Short Duration Tests. The current readings obtained dur
ing the short term can be converted to depth of penetration
values using Faraday's Law. For non-cavitating flow, the short
term test values can be used to predict depth of penetration
for longer test durations under similar potentiostatic and flow
conditions. Figure 8 illustrates a typical plot of the projected
depths of penetration for 4.5 hours test duration based on a
short term test. The depths presented are for 7j = + 100 mV
under noncavitating conditions at v = 14.7 mis, and are plot-

Discussion of the Results

Polarization Curve Results. Figure 6 illustrates a typical
polarization curve (E versus log /) for copper in static seawater
where i is current density. The anodic branch gives a straight
line over a wide range of potentials. In contrast the cathodic

Multi-Electrode Test Procedure. After polishing with 600
grade emery paper, a resistance check is performed on each
electrode with a Digital Voltmeter to confirm that each elec
trode is insulated.

After the polished specimen and holder were clamped into
position, the required cavitation and corrosion conditions were
established and allowed to stabilize before readings were taken.
The corrosion conditions were set up using the potentiostat to
control the main electrode potential, as in the earlier experi
ments. The acquisition of the corrosion current from the mini
electrodes and the main electrode were under software control.
For the short duration tests, three sets of current data were
acquired for each electrode at one minute intervals. An average
value of these three readings for each mini-electrode was used
in subsequent analysis. In the case of the longer duration tests,
a complete set of mini-electrode current readings were acquired.
at 5 minute intervals throughout the 4.5 hour test.

Fig. 5 Dual data logging system

The photograph in Fig. 5 shows the dual data logging system
used in these experiments. To ensure the elL type AID con
verter received a clean signal, care was taken to screen possible
sources of noise. This included using screened cables where
possible and encasing the computer monitors with earthed mild
steel sheets.

Multi-Electrode Test Program. Two high values of 7j (where
7j = E - Ecorr) have been investigated using the multi-electrode
specimen, 7j = + 50 mV and 7j = + 100 mV, under differing
cavitation conditions (noncavitating, peak noise cavitation t..
= 1.6, a = 6.22 and t.. = 3.0, a = 6.00) at v = 14.7 m/s.
The above tests are 5 minutes in duration to protect the spec
imen surface from cavitation damage. Damage to the surface
might lead to the short circuiting of the mini-electrodes as the
plastic deformation of the surface could break down the in
sulation around each electrode.

After the above tests were completed, a longer term test was
carried out at 7j = + 50mV under peak noise cavitation for a
similar duration to that of the tests described in [I) (i.e., 4.5
hours). These tests allow currents from the mini-electrodes to
be monitored throughout the test duration. Mini-electrodes
positioned in the areas of bubble collapse are of particular
interest as their effect on the local corrosion rate can be in
vestigated.
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ted against the distance along the specimen from the leading
edge (Fig. 1). As the mini-electrodes lie in three lines across
the specimen width, the values from them have been plotted
out separately forming plots I, II, and III on Fig. 8, plot I
being the bottom line of electrodes, as shown in Fig. 9, plot
II the middle line and plot III the top line.

As expected, the maximum currents (penetration depths)
occur in the areas of maximum shear flow (extreme turbu
lence), adjacent to high bulk fluid velocities (i.e., electrodes
3, 5, 6, and 8). For plots I and III this is seen to be the case.
Moving further downstream from these electrodes the current
decreases and then recovers slightly towards the trailing edge
of the specimen. For Plot II, the center line of the specimen,
the currents recorded in the wedge wake are much less than
plots I and III until about 40 mm downstream from the leading
edge. At this position on the specimen, and for positions fur
ther downstream, the currents have recovered to similar values
to those of plots I and III. It is believed that the low current
measured just downstream of the edge is due to the low flow
velocity in that part of the wake. Further downstream the
measured currents across the specimen (plots I, II, and III)
become nearly equal because of turbulent mixing of the wake
with the outer flow.

A useful check of the depth of penetration values can be
made by comparing them with the actual depths from the
Talysurf tests under non-cavitating flow at v = 14.7 mls and
1] = + 100 mY). Such a comparison is illustrated on Fig. 10.
The Talysurf traces A to G were taken at positions on the
specimen coinciding with certain rows of electrodes as shown
in Fig. II. Good agreement between the projected depths and

actual depths can be seen. Therefore, for non-cavitating flows
the mini-electrode currents from short term tests can be con
verted to depth values and used to predict depth of corrosion
attack.

The effect of changing cavitation conditions can also be
investigated by monitoring mini-electrode currents. Figure II
shows mini-electrode currents versus specimen length for 1] =
+ 100 mY, v = 14.7 mls and three different cavitation con
ditions: noncavitating, peak noise cavitation (A = 1.6, a =
6.22) and cavitation with A = 3.0, a = 6.00. The effect of
cavitation can be seen by comparing Figs. II(b) and 1I(c) with
11(0). The effect of peak noise cavitation on the current plots
can only be seen in the region immediately downstream of the
wedge base (compare Figs. 11(0) with II(b». Within this re
gion, plots I and III have slightly increased current values while
plot II has decreased values. The decrease in current seen in
plot II could indicate shielding of the specimen by bubbles
trapped in the dead water region.

The effect of A = 3.0, a = 6.00 cavitation conditions are
seen when Figs. 11 (0) and II (c) are compared. The presence
of a large apparent cavity length appears to have an effect
upon the current plots similar to the shorter peak noise cavity
length. Plots I and III appear unaffected in the cavitation
damage areas (damage areas are indicated on Figs. II(b) and
I I(c» which indicates that there is no additional corrosion due
to the presence of cavitation.

The above current plots are obtained while the specimen is
in the cavitation erosion incubation period (i.e., no mass loss).
To investigate whether there is any additional corrosion due
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to the presence of cavitation in the cavitation damage areas, 
requires a test of longer duration to include the steady state 
erosion period (i.e., constant mass loss rate). From the dis
cussion on the polarization curves reported earlier in this paper, 
it was found that during the steady state erosion period an 
additional corrosion current was detected. 

Long Duration Tests. The long duration test was con
ducted under peak noise cavitation conditions (X = 1.6, a = 
6.22) at v = 14.7 m/s with J; = + 50 mV. It should be noted 
that the values for electrodes 8, 10, and 16 are not present on 
the long duration test plots as they shorted out during the test, 
the electrodes 8 and 10 being in the primary cavitation damage 
area (see Fig. 1) were expected to short out. Electrode 16 
periodically shorted out during the test. Electrodes 14 and 17 
were also corrupted by periodic shorting. 

The mini-electrode currents of greatest interest are those 
from within the cavitation affected areas. Figures 12 and 13 
show currents from electrodes 8 and 15 which are in the primary 
cavitation damage area and the secondary cavitation damage 
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Fig. 13 Mini-electrode no. 15, current readings for 4.5 hour test under 
peak noise cavitation conditions, v = +50 mV 

Table 1 Mini-electrode currents recorded within the primary 
cavitation damage areas on a copper specimen 
X = 1.6, v = 14 J m/s, r, = +50 mV, Temp = 26"C, 
Mean main electrode current = 14.6mA 

Electrode Short duration Long duration Duration 
No. Test 5 mins. (^A) Test* (/JA) before 

shorting 
(mins) 

6 
8 
9 

10 

Average current 

11.2 
10.4 
5.9 
7.2 

8.7 

'Long duration test currents ave raged over 

21.6 
31.3 
17.4 
19.8 

22.5 

the time b 

40 
15 

115 
70 

:fore shorting. 

area respectively. It can be seen from Fig. 12 that in the primary 
cavitation damage area the mini-electrode No. 8 shorted out 
after 15 minutes test duration. The mini-electrode remained 
insulated for a short period before further damage caused 
permanent shorting. This was typical of the four mini-elec
trodes in the primary cavitation damage area. Prior to the 
shorting of these electrodes, their average current readings were 
22 uA. This is double the average current reading for the 
equivalent 5 minute short duration test (9 uA, see Table 1). 

A possible cause of this current increase recorded during 
long duration tests would be local or crevice corrosion occur
ring at the mini-electrode/main electrode interface. Optical 
investigations revealed no evidence of such corrosion. 

Two other factors could account for this increase in current. 
First, it could be due to an increase in the local corrosion rate 
caused by roughening of the surface as a result of material 
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removal by cavitation since the corrosion rate is dependent 
upon the level of turbulence. Second, as the only difference 
between the short and long term tests is that material removal 
is occurring in the long duration test, a process which produces 
fresh (reactive) copper surfaces. This could increase the cur
rent. A further investigation using the multi-electrode tech
nique is required to determine which of the above explanations 
is correct. 

Conclusions 

Multi-Electrode Experiments. A 24 mini-electrode speci
men has been used to monitor the current distribution over a 
copper specimen surface. A test program consisting of short 
and long duration test has been completed to investigate the 
effect of changing cavitation conditions on the current distri
bution over the specimen surface. 

Short Duration Tests. The mini-electrode currents have 
been converted into depth of penetration values to allow a 
comparison with the Talysurf profiles obtained in previous 
experiments [1]. Projected depths, evaluated from the short 
duration tests (5 minutes), were found to be in good agreement 
with the Talysurf profiles of a specimen subjected to similar 
corrosion conditions. Therefore, for the limited cases studied, 
current measurements over a short time period could be used 
to predict corrosion penetration depths. 

The current distributions obtained using the multi-electrode 
specimen have been related to the flow conditions in the cor
rosion cell. The presence of cavitation in the corrosion cell 
affects the current distribution (i.e., penetration depths) down
stream of the wedge. The main effect caused by cavitation is 
to lower the corrosion current in the dead water region directly 
behind the wedge. No evidence was found of any additional 
corrosion due to the presence of cavitation in the cavitation 
damage areas while the specimen was in the incubation period. 

Long Duration Tests. As concluded in the last section, for 
a surface exposed to cavitation bubble collapse within the 
incubation period, no additional corrosion currents due to the 
presence of cavitation in the damage zones were measurable. 
The long duration tests enabled the comparison of these cur
rents with currents obtained from the same electrodes but while 

mass loss was occurring. The electrode currents from the long 
duration tests within the primary cavitation damage areas 
showed, on average, a doubling of the short duration currents. 
This increase in current has already been noticed when com
parisons between polarization curves obtained during the in
cubation period and the steady state erosion period were made. 
The doubling of the current is likely to be a result of fresh 
(highly reactive) surfaces being exposed to the seawater by 
material erosion. 

An alternative reason to cause a doubling of the current is 
that of increased turbulence due to the increase in surface 
roughness. The turbulence level is likely to be a maximum 
during the steady state erosion period as the surface roughness 
is greatest during that period. A study of the dependence of 
the corrosion rate on the surface roughness is required to 
confirm this point. 

Further tests are required, using the techniques described in 
this paper to determine the synergistic mechanism. Not enough 
information is available to say whether the mechanism is either 
one of enhanced corrosion or enhanced cavitation erosion. 

Uncertainties at 20:1 odds 

Sigma 
Nondimensional cavity length 
Mass loss rate 
Overpotential 
Mini-electrode currents 

Main electrode currents 

o 
X 
M 

V 
I 

I 

Uncertainty 
±0.01 
±0.1 
±0.1 mg/hr 
±0.5 mV 
Within range 
±0.5 nA 

to 
±5.0 nA 
±0.1 mA 
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Analysis of Transient Pressures in 
Bubbly, Homogeneous, Gas-Liquid 
Mixtures 
Flow of a gas-liquid mixture in a piping system may be treated as a pseudo-fluid 
flow if the mixture is homogeneous and the void fraction is small. The governing 
equations for such flows are a set of nonlinear partial differential equations with 
pressure dependent coefficients. Shocks may be produced during transient state 
conditions. For numerical integration of these equations, two second-order explicit 
finite-difference schemes are introduced. To verify validity of the computed results, 
they are compared with the experimental results. 

Introduction 
Two-component flows occur in piping systems in several 

industries, such as nuclear power plants, chemical processes, 
petroleum industries, geothermal power plants, and in sewage 
pipelines (Pearsall [12]). Gases may be entrained in other liq
uid-carrying pipelines due to cavitation (Wiggert and Sundquist 
[16]), gas release during low-pressure transients (Swaf field [15], 
Kranenburg [5], Papadakis [11]), liquid-column separation 
(Safwat [13], Safwat and Polder [14]), or by an hydraulic jump 
(Kalinkske and Robertson [4]). The flow in these cases is, 
therefore, a mixture of gases and liquids. Unlike in a pure 
liquid in which the pressure wave velocity is constant, the wave 
velocity in gas-liquid mixtures varies with the pressure. Thus, 
the coefficients of governing equations are pressure dependent 
and consequently the analysis of transients in the two-com
ponent flows is more complex and difficult than in single-
component flows. In addition, shock waves may form due to 
the steepening of pressure waves limiting the use of method 
of characteristics, usually employed for solving the governing 
equations. The complexity of analysis increases if the individ
ual components are moving with different velocities (separated 
flow model) as compared to if they have the same velocity 
(homogeneous model). 

The gas-liquid mixture may be treated as a pseudo-fluid if 
the void fraction is small and the mixture is homogeneous. 
This assumption simplifies the analysis considerably and usu
ally produces acceptable results for typical engineering appli
cations. Transient flow of homogeneous gas-liquid mixtures 
are described by a set of nonlinear hyperbolic partial differ
ential equations. A closed-form solution of these equations is 
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not available. Therefore, numerical methods are used for their 
solution (Martin and Padmanabhan [6], Martin et al. [7], Pad-
manabhan et al [10]). The coefficients in these equations are 
pressure dependent, which causes difficulties in the numerical 
solution. Since shocks may be produced during the transient-
state conditions, only those methods which can handle shocks 
without special treatment are more suitable for their appli
cation. The method of characteristics and a number of finite-
difference schemes have been used for the analysis of transient, 
two-component flows. The method of characteristics requires 
isolation of the shock and most of the other methods are first-
order accurate which smears the shocks. Wiggert et al. [17] 
and Martin and Naghash [8] have used implicit methods to 
obtain a solution without isolating the shock. 

In this paper, two new second-order explicit finite-difference 
schemes are introduced for the analysis of transient two-com
ponent flows. These schemes have been used in computational 
fluid dynamics and have been applied recently to solve the 
transient problem with only liquid in the pipe (Chaudhry and 
Hussaini [2]). They are second-order accurate both in space 
and time. Higher-order methods require more computational 
effort per time step; however, fewer computational nodes may 
be used to obtain the same accuracy by using these methods. 
In addition, higher-order methods reproduce sharper shocks 
compared to the first-order methods. The computed results 
are compared with the experimental results to demonstrate 
validity of the simplified model and of the computational pro
cedures. 

Governing Equations 
As clearly formulated by Yadigaroglu and Leahy [18], the 

one-dimensional equations of two-phase flow constitute a six-
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equation set of mass, momentum, and energy conservation. 
In addition to two equations for each phase, constitutive re
lationships are necessary for mass, momentum, and heat trans
fer at the interfaces and other surfaces, as well as wall friction. 
In general, however, the six separated flow equations, whether 
drift flux or other form, are not commonly used in their en
tirety. Indeed, for many systems the gas and liquid phase 
equations are combined to yield a pseudo-fluid equation that 
does not allow slip. Such an assumption is certainly reasonable 
for systems with very low void fractions and finely distributed 
bubbles, which was the case with the experiments reported 
herein. 

The separate unsteady one-dimensional mass conservation 
equations are 

(d/dt)[pgaA] + (d/dx)[pgaA Vg] = FA (1) 

for the gaseous phase, and 

(3/9/) Up, (1 - a)]A) + (d/dx) 

l[p,(l - a)\AVx] = -YA (2) 

for the liquid phase, where P = absolute pressure, x = distance 
along the pipeline, A = the cross-sectional area of the conduit, 
ps = mass density of the gaseous phase, px = mass density of 
the liquid phase, a = the void fraction, Vg = the average 
velocity of the gaseous phase, Vx = the average velocity of 
the liquid phase, t = time, and Y is the mass transfer between 
phases. 

For flows with little or no slip between phases (Vg ~ Vx = 
V) the summation of equations (1) and (2) results in 

(d/dt){[pga + p,(l - a)\A) + (d/dx){[pga 

+ Px(l - a)]AV) = 0 (3) 

Defining the mass density of the mixture as 

Pm = Pg<x + PiU - a) (4) 
the continuity equation becomes 

(d/dt)\p„A) + (d/dx)lp,„A V\ = 0 (5) 

The combined momentum equation representing the two phases 
undergoing horizontal flow is 

{d/dt){[pga + p,(l - a))AV) + (d/dx)\[pga 

+ p,(l - a)]AV2} + A(dP/dx) + WDTW = 0 (6) 

where r„, = the wall (boundary shear stress), and D = the 
internal diameter of the pipe. The absolute value of the mixture 
velocity V is invoked in order to allow for boundary shear 
reversal as the flow reverses. The boundary shear relationship 
is based upon 

T„. = (f/8) P l (1 - a) V] (7) 
where/ = the Darcy-Weisbach resistance coefficient. For this 
quite small void fraction flow, for which (1 - a) = 1, the 
boundary shear is approximated by (f/8) pxV

2. 
As shown by Martin, Padmanabhan, and Wiggert [7] math

ematical techniques can be applied to the above conservation 
equations to yield the wave speed of the mixture. Assuming 

the liquid to constitute a large heat sink, the speed of sound 
under isothermal conditions for this homogeneous mixture at 
very low void fractions can be reduced to 

am = ipm[«/P + l / ( p , « ? ) ] r l / 2 (8) 

where ax = the wave speed for single phase liquid only. The 
above equations do not allow for any effects of surface tension. 
By comparing the computed and measured wave speeds, Mar
tin and Padmanabhan [6] showed that equation (8) yields sat
isfactory results. 

Using the definition of mixture density p,„ and pseudo-fluid 
wave speed a,„ the governing equations for a two-phase mixture 
having a very low void fraction and insignificant slip become 

dP 

dt 
+ Pnfi, 

dx 

at p„, dx 2D 

(9) 

(10) 

As is true for single-phase liquid flows at quite low Mach 
numbers, the convective acceleration terms have been dropped 
from these equations. Although the speed of sound can be 
considerably lower for a gas-liquid mixture than for the single-
phase liquid itself, in these experiments the Mach number is 
still quite low because of relatively small velocities of the flow
ing phases. 

The equation of state for the gas constitutes the third equa
tion needed to solve the three dependent variables V, P, and 
a. For isothermal conditions, this is given as 

aP = aoP0 (11) 

where subscript 0 indicates the values at the initial conditions. 

Solution of Governing Equations 
Two second-order accurate explicit finite-difference meth

ods are presented in the following paragraphs. Although these 
schemes have been applied for analyzing a number of problems 
in computational fluid dynamics, they have not been used for 
computing the transient two-component flows. In the follow
ing presentation, an asterisk (*) denotes the predicted values; 
subscript / refers to the space node and the superscript j refers 
to the time level (Fig. 1). A pipe is divided into n equal-length 
reaches, with the first section numbered as 1 and the last section 
numbered as n + 1. Each section is called a node. The values 

j+ I (Unknown 
time level ) 

j (Known 
time level 1 

i - l i i+l x 

Fig. 1 Computational grid 

Nomenclature 

a 
D 
f 
G 

I = 
m = 

wave speed 
pipe diameter 
Darcy-Weisbach friction factor 
air mass flow rate 
subscript for the gas phase 
subscript for the space node 
superscript for the time node 
subscript for the liquid phase 
subscript for the gas-liquid mix
ture 

n = 

P = 
R = 
r = 
/ = 

M = 
V = 
V = 
x — 

number of reaches into which 
pipe is divided 
absolute pressure 
f&t/(2D) 
Ax/At 
time 
time interval 
velocity 
volume 
distance 

Ax 
0 

* 

a 
P 
V 
X 

= reach length 
= subscript for the initial steady 

state conditions 
= superscript for indicating the 

predicted values 
= void fraction 
= density 
= unknown multiplier 
= characteristic direction 
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of V, P, and a are assumed to be known at all nodes at j time 
level (referred to as the known time level) and their values are 
to be determined at thej+l time level (referred to as the 
unknown time level). The known values at the known time 
level j may be the initial conditions or they may be computed 
during the previous time step. 

equations (18) and (19) and then the value of a from the 
equation (11). 

Note that these equations yield the values at the interior 
points only, i.e., at / = 2,3, ..., n; values at the boundary 
nodes are computed from the boundary conditions, as dis
cussed later. This method is stable if a„,At<Ax. 

MacCormack Scheme 
The MacCormack scheme [9] is second-order accurate in 

both space and time. It is comprised of two steps: predictor 
and corrector. One-sided finite difference approximations are 
used for the spatial derivatives in each of these steps. For 
example, forward finite-difference may be used in the predictor 
part and backward finite differences in the corrector part. 
Another alternative would be to use the backward finite dif
ferences in the predictor part and forward finite differences 
in the corrector part. MacCormack recommends using these 
alternatives in a sequence, i.e., the first alternative at one time 
step, the second alternative during the next time step, followed 
by the first alternative again. 

In the first alternative, the spatial derivatives are replaced 
as follows: 

Predictor Part: 

Corrector Part: 

dF __ Fj - Fj^ 

dx Ax 

dZ = J?+i ~ F* 
dx Ax 

(12) 

(13) 

In these equations, F is used for brevity to represent both V 
and P. Substituting these approximations for dP/dx and dV/ 
dx and simplifying the resulting equations, the following equa
tions are obtained: 

Predictor Part: 

P? = Pi ~ lip^MVi - VU) 

v? = v{ •(£>:<« 
(14) 

P\.x) - RV{W\\ (15) 

in which r = At I Ax and R = fAt/(2D). 

Corrector Part: 

P, = Pf - r(pma2
m)f(Vf+l Vf) 

V, = Vf - r(~Y(Pf+l - Pf) - RVfWfl 

(16) 

(17) 

The values of V and P at they + 1 time level may be computed 
from the following equations: 

p{+i = -2(p\ + P,) 

Vi+l =\{V\+ V,) 

In the second alternative, the above equations are: 

Predictor Part: 

Pf = p{- liPnfltikvUi - vi> 

(18) 

(19) 

vr = vt 
V W / 

(20) 

Pf) - RV\\V\\ (21) 

Corrector Part: 

V, 

P, = Pf - r(flmai)t(Vf - Vf_{) 

vr - r(—) (Pi - p;_,) - RVfWf 
\finj i 

(22) 

I (23) 

The values of Vj+i and Pj+i may now be determined from 

Gabutti Scheme 
In this scheme (Gabutti [3]), the governing equations are 

first transformed into the characteristic form and then the 
partial derivatives are replaced by the finite difference ap
proximations. Like the MacCormack scheme, it is a predictor-
corrector scheme. However, the predictor part is further sub
divided into two parts. 

By multiplying equation (10) by r; and adding it to equation 
(9) 

dP 7/ dP 
dt p,„ dx_ + V 

dv , Pymdv 
dt dx 

+ n~v\v\ = o (24) 

Let 

t]/pm = dx/dt = pma2Jr\ (25) 

It follows from this equation that the characteristic directions, 
X+ and X", are 

X+ = dx/dt = a,„ (26) 

X" = dx/dt = -am (27) 

By utilizing equations (25)-(27), equation (24) may be written 
as 

dP 

dt 
+ X 

and 

dt 
+ X 

_dp+ 

dx 

_dP-
dx 

+ Pnfln 
dV + dV+ 

+ Pnflm^V\V\ = 0 (28) 

- Pnfln 
dV JV-
— + \~-r-
dt dx 

- Pnfln, {^V\V\ = 0 (29) 

By adding equations (28) and (29) and simplifying 

dP 
— + 0.5 
dt dx dx 

+ 0-5 Pnfln X + dV+ 

dx 

_dV~ 

dx 
= 0 (30) 

By subtracting equation (28) from equation (29) and simpli
fying 

d_y 

dt 
¥ 0.5 

0.5 

Pnfln 
X + 

vdV+ 

dx 

dP + 

dx 

+ \-

- X 

dv-

dx 

_dP~ 

dx 

+ —v\v\ 
2D 

0 (31) 

Equations (30) and (31) are referred to as the equations in X-
form. Note that the spatial derivatives are marked with su
perscripts + and - to indicate the characteristic directions 
along which these derivatives are approximated (Fig. 2). Sub
stitution of finite-difference approximations for the time de
rivatives into equations (30) and (31) yields the predicted values 
of Vf and Pf: 
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Fig. 2 Characteristic lines 

Regulated 

pressure Air injection 
assembly for 

'calibration 

Bend 
meter p 

Pressure 
transducer 

Depth measuring 
probe 

Fig. 3 Schematic of experiment 

Pf = pi - 0.5At 
^JP+ , dP~ 
x + - — + x - — -

dx dx 

O.SpmamAt 
hdV+ 

dx dx 

Vf = V'i - 0.5At 

O.SAt 

dx dx 

P A dx dx 
RVJi\Vj\ 

(32) 

(33) 

The spatial derivatives in equations (26) and (27) are approx
imated as follows: 

(34) 

Predictor Part: 

Part 1: 

dF+ 

dx 

dF~ 
dx 

Fj - FU 
Ax 

Fj+[ - Fi 
Ax 

(35) 

These finite-difference approximations are used to determine 
the predicted values of Pf and Vf from equations (32) and 
(33). 

Part 2: 

The following finite-difference approximations are used to 
dP* 

determine the predicted values of time derivatives —— and 

dV* 
—— from equations (30) and (31): 
dt 

dF+ _ 2Fj - 3FJn + Fj_2 

dx Ax 
dll= - 2 f j + 3Fj+l - Fj+2 

dx Ax 

(36) 

(37) 

Corrector Part: 

By using the following finite-difference approximations and 
using V* and P* instead of Kand P in equations (30) and (31), 

dP dV 
the corrected values of time derivatives — and — are: 

dt dt 

dF+ 

dx 

dF~ 

dx 

Ff - J?-1 
Ax 

Ff+i - Ff 
Ax 

(38) 

(39) 

Then the values of V and P at the unknown time level are 
determined from the following equations: 

P r = Pi + O.SAt (d-f- +
 d-f) 

V dt dt) 
(40) 

Sintered stainless 
steel tube 

V r l m t M f i l i ' l l 

^ . U A \ tj.tij^^^^^M ^ Compressed 
"\ I I '*"-"."" •' ^-'i " " air source 

\ Air \ 
Streamlined Copper 
entrance sleeve 

Fig. 4 Air injection assembly 

V\* V\ + O.SAt 
(dV* 

\dt +%) (41) 

Note that the above discretization is possible only at nodes 
3,4,..., n- 1 during the part 2 of the predictor part. Onesided 
differences are used at nodes 2 and n-\. Also, special treat
ment is needed at the boundary nodes, which is discussed next. 

Boundary Conditions 
The computational procedures discussed in the previous sec

tions are for the interior nodes; boundary nodes require special 
treatment. For this purpose, several procedures have been pro
posed. In the writers' opinion, the characteristic boundaries 
yield better results and are used herein. 

It follows from equation (25) that 

n = ±Pnflm 
If V = Pnflmt then equation (24) may be written as 

(42) 

dt p,„a„, dt 2D 
(43) 

and, if rj = -pma„„ then equation (24) may be written as 

dV 1 

dt pma, dt 2D 
(44) 

Multiplying equations (43) and (44) by dt, integrating along 
the positive and negative characteristic lines (Fig. 2) and by 
using the values of coefficients at the known time level, the 
following equations are obtained 

vj+l - vu + (i/p»fl»,H-iW+l 

- PU) + RVi_xWU\ = 0 (45) 

yJi+l ~ Vl+t - ( l / / - A ) f + i W + l 

- Pj+]) + * H + 1 I ^ + 1 I = 0 (46) 

At the downstream end, equation (45) is solved simultaneously 
with the condition imposed by the boundary; and at the up
stream end, equation (46) is solved simultaneously with the 
condition imposed by the boundary. 

Experimental Investigations 
To verify the validity of the above model and of the nu

merical schemes presented in the previous sections, experiments 
were conducted on a piping system in the hydraulics laboratory 
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of the Georgia Institute of Technology. A schematic of the 
test facility is shown in Fig. 3. The length of the pipe, L was 
equal to 30.6 m and its diameter was 0.026 m. The air pressure 
in the tank could be controlled by a pressure regulator. The 
rate of water inflow into the left tank was measured by means 
of a bend meter. Under equilibrium conditions, this flow rate 
corresponded to the mean flow rate through the pipe. Com
pressed air was injected into the test pipe through a porous 
wall portion of the entrance, as shown in Fig. 4. A micro-
metering valve with a fine adjustment was used to measure the 
rate of mass inflow of compressed air. Transient-state pressures 
were monitored by high-frequency-response pressure trans
ducers at three locations, as shown in Fig. 3. The three stations 
are located at x = 8.0 m, 21.1 m and 30.6 m, respectively, 
from the upstream end. These pressures were recorded on a 
four channel Hewlett Packard recorder with a carrie pre-am-
plifier unit. 

Experimental uncertainty estimates were calculated from the 
respective calibrations of the micrometer air flow meter, the 
elbow meter and the pressure transducers. The orifice type air 
flow meter was calibrated volumetrically using water over the 
same Reynolds number range as employed in the transient test 
program with air, while the water flow elbow meter was cal
ibrated gravimetrically. The four pressure transducers were 
calibrated in situ with reference to a test pressure gage. The 
uncertainty estimates are as follows: 

Pressure: ±9.8 x 103 Pa; 
Volumetric flow rate of water: ±1.4 x 10~5 m3/s; 
Mass flow rate of air: ±2.3 X 10~7 kg/s; 
Wave speed: ±15.0 m/s. 

The test procedure was as follows: A steady-state flow of 
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Fig. 7 Comparison of computed and experimental results: Mac-
Cormack method (a) at Station 1 for Test 1, (b) at Station 2 for Test 1, 
(c) at Station 1 for Test 2, (d) at Station 2 for Test 2 

an air-water mixture was established in the test pipe by con
trolling the exit valves and the pressure of the injected air at 
the inlet. The flow velocity was maintained at a high enough 
rate so that slug flow could be avoided by limiting the rate of 
air injection. The steady-state readings of water-flow rate, mass 
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Fig. 8 Comparison of computed and experimental results: Gabutti 
method (a) at Station 1 for Test 1, (b) at Station 2 for Test 1, (c) at Station 
1 for Test 2, (d) at Station 2 for Test 2 

flow rate of injected air, air injection pressure, air pressure 
and water level in the upstream tank, and pressure at the 
selected locations were taken. The downstream valve was rap
idly closed and the pressures at three locations were contin
uously recorded. These pressure records are used for verifying 
the above computational procedures. 

Comparison of Computed and Measured Results 
Both of the above two schemes were used to compute the 

transient-state pressures in the pipeline. The upstream bound
ary was a constant-level reservoir while the downstream bound
ary was the known pressure history at pressure transducer no. 
3. A velocity boundary condition was not used at the down
stream boundary because the measurement of the rate of clo
sure of the exit valve and, consequently the measurement of 
velocity are very difficult. Characteristic boundaries were used 
in both the schemes. In the Gabutti scheme, two-point finite 
difference approximations were used at the nodes adjacent to 
the boundaries if three points were not available in the desired 
direction. The computational time interval was selected such 
that the Courant stability condition was satisfied at all nodes 
with the computed values at the unknown time level. If nec
essary, the conditions were computed with a reduced time 
interval. 

The computed and measured pressures were compared at 
stations 1 and 2 for two different test conditions. In test 1, 
the constant upstream reservoir pressure P0 was 18.46 m of 
water absolute and the steady flow velocity V0 was 2.42 m/s. 
Steady air mass flow rate G0 was equal to 4.1 x 10"6 kg/s 
with a downstream void ratio CY0 of 0.0023. Steady flow friction 
factor/was computed from the measured data to be equal to 
0.0205. The measured variation of pressure head at the down
stream end, which is used as boundary condition is shown in 
Fig. 5. In test 2, P0 = 21.70 m, V0 = 2.94 m/s, G0 = 1.15 
x 10~5 ArgA, a0 = 0.0053 a n d / = 0.0195. Figure 6 shows 
the measured variation of transient state pressure at the down
stream end. The wave speed with only water in the pipe was 
equal to 715 m/s. Typical comparisons for MacCormack 
scheme are shown in Fig. 7 and for Gabutti Scheme in Fig. 8. 
It is clear from these figures that transient pressures are sat
isfactorily simulated by the simplified model and the numerical 
schemes presented herein. However, it can be seen that the 
wave dissipated at a slower rate in the computations than that 
in the measured results. Similar behavior is usually observed 
during computations of transients in single component flows; 
the reasons for the difference are not clear at this point. 

Summary and Conclusions 
It is shown that the two-component gas-liquid flows in pipes 

may be treated as pseudo fluid flows for small void fractions 
and homogeneous mixtures. Two second-order explicit finite-
difference techniques are used for solving the governing non
linear partial differential equations. These techniques capture 
the shock without any special treatment and are therefore 
preferable to commonly used method of characteristics. Com
puted results compared satisfactorily with the experimental 
results demonstrating the validity of the model and the com
putational techniques. 
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Dynamics of an Elongated Bubble
During Collapse
An analytical model is presented to describe the collapse of an elongated bubble,
which appears in the core of a cavitating vortex. The flow field is assumed to be
irrotational, due to a sink line. The kinematic and dynamic conditions are applied
only at the tip and in the middle of the bubble surface. This simplified theory must
retain losses of mechanical energy near the tips of the bubble, which are due to a
microjet. In order to check the validity of this model, the irrotationalflow equations
have been solved numerically by using a panel method; the numerical results agree
with the analytical ones and confirm the existence of the microjet at the tip. The
agreement with experimental results is also good. For very slender bubbles the speed
near the tips becomes very large, and this may be cause of cavitation damage. A
simplified approach is proposed to explain the flow in the microjet.

1 Introduction
In this work a model is presented to describe the collapse

of an elongated bubble which is formed in the nucleus of a
vortex, and whose axial collapse velocities are very large and
increase as the slenderness of the bubble increases.

In Fig. I, taken from reference [1], it is shown that air
injected in the liquid is attracted toward the core of a vortex
shed from the tip of a blade. The wave-like shape of the
interphase can be described with a model based on an analogy
with the theory describing gravity waves in a water channel.
Progressive linear waves and nonlinear hydraulic jumps and
solitary waves are found to propagate along the interphase;
good agreement is found between the theoretical predictions
of the wave velocities and the experimental results (reference
[I]).

In turbulent flows in general, and in particular in the tur
bulent boundary layers along the walls of turbomachine ele
ments, there are multiple vortex filaments which may attract
the gaseous products resulting from incipient cavitation. In
Fig. 2 a scheme of the turbulence structure presented by Ten
nekes [2] is shown. If gaseous columns like those of Fig. 1
break into bubbles of a length of the order of magnitude of
the radius of curvature of the filaments, it may be speculated
that the resulting bubbles will be elongated, with a slenderness
of an order of magnitude equal to the ratio of the Taylor and
Kolmogorov lengths, which is proportional to Re l

/
4

, where Re
is the Reynolds number of the mean flow. In turbulent bound
ary layers there will be secondary vortex lines perpendicular
to the average vorticity due to the mean shear, and conse
quently normal to the wall. It is shown here that the resulting
bubbles create very high velocities normal to the wall which
may originate the cavitation damage.

Avellan and Karami [3] made some experiments which con
sisted in creating a vortex subjected alternately to underpres-
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sure and overpressure by periodically opening and closing a
valve. During the underpressure period a cavity appeared in
the vortex nucleus which subsequently collapsed against a wall
normal to the vortex when the pressure was raised. In this wall
a specimen was immersed and its erosion was observed. The
side wall enclosing the vortex was transparent, and the diameter

Fig. 1 Cavities along a tip vortex (reference [1 D
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Fig. 3 Schematic showing bubble dimensions and coordinates 

and length of the bubble were measured photographically as 
a function of time during the collapse; these results are used 
for comparison with the theory proposed in this paper. The 
collapse velocities and the damage to the specimen were sub
stantially larger than those corresponding to the collapse of a 
spherical bubble. 

In this paper we consider an elongated bubble, as it is rep
resented in Fig. 3. The inverse of the initial slenderness ratio, 
e, is assumed to be small. The presence of a wall normal to 
the bubble is taken into account by putting the wall at the 
middle of the bubble, so that the real bubble length will be 
half of that in Fig. 3. This relative position of the bubble with 
respect to the wall corresponds to the configuration of Avellan 
and Karami [3] experiments and to bubbles associated to the 
secondary vorticity of turbulent boundary layers. 

Although the vortex causes the initial elongated shape of 
the bubble, the radial variation of pressure due to the cen
trifugal force is neglected in the model presented here. If this 
radial pressure variation is comparable to the driving pressure 
causing the collapse, this approximation is no longer valid, 
and the resulting flow field may be quite different. Chahine 
[4] has performed numerical calculations showing that for large 
enough azimuthal velocities a constriction appears in the mid
dle of the bubble, whereas in our problem there is a microjet 
at the tip. 

The effect of surface tension has not been considered either. 
This assumption may fail near the tip, where the radius of 
curvature is smallest, of the order of Lt2. On the other hand, 
the nondimensional velocity in that region is largest, of order 
1/e, so that both effects cancel when combined in a Weber 
number. Its order of magnitude turns out to be ApL/a, where 
Ap is the pressure difference between that at infinity and the 
saturated vapor pressure inside the bubble, and a is the surface 
tension; in many situations of interest this number is large. 

Viscous and turbulence effects are also neglected; however, 
a dissipative term is retained in Bernouilli's equation. This will 
be shown to be due to a microjet at the tip. 

Prosperetti [5] suggests using distributions of sinks to de
scribe the evolution of nonspherical bubbles during the col
lapse. Based on this idea, it is assumed here that there is a 
sink line of constant strength and length 2L along the axis of 
the bubble. During the collapse, the bubble has to be a fluid 
surface (kinematic condition), and the pressure on it has to be 
constant (mechanical condition) and equal to the vapor pres
sure. To satisfy initially the mechanical condition, it is nec
essary that the bubble surface is a surface of constant potential, 
which, in this case, is an ellipsoid of revolution, as shown by 
Milne-Thomson [6]. This means that the initial shape of the 
bubble is not arbitrary; nevertheless, it is expected to be rep

resentative of elongated bubbles. At later times, it turns out 
to be impossible to satisfy both the kinematic and mechanical 
conditions over all the surface of the bubble with a flow field 
given by a sink line. Consequently, the kinematic and me
chanical conditions are applied only at the middle line (A in 
Fig. 3) and at the tips of the bubble. This results in a system 
of four ordinary differential equations for the three lengths 
indicated in Fig. 3 and for the sink intensity. When solving 
this system of equations, it is found that the distance E (Fig. 
3) goes to zero in a very short time, while the bubble radius, 
R, and lengtTi, 21., remain almost equal to their initial values. 
This difficulty is solved if a dissipative term is retained in 
Bernouilli's equation at the tip of the bubble. It is shown that 
this dissipative process is due to a microjet. If there is a mi
crojet, the velocity at the tip has both radial and axial com
ponents, and the dissipative term is the kinetic energy of the 
radial component. A simplified quasi-analytical solution is 
obtained to calculate the evolution of the bubble dimensions. 
Good agreement is obtained with the results of the quasi-
analytical solution and the experiments of Avellan and Karami 
[3]. 

The simplification, which consists in satisfying the mechan
ical and kinematic conditions only at the tip and in the middle 
of the bubble, is strong and not very well justified. A similar 
simplification has also been made by Prosperetti [5], who ob
tained results which were in agreement with those of more 
exact methods; however, he studied the collapse of a slightly 
oblate bubble, which is very different from the one considered 
here. To check the validity of the model proposed here, a 
numerical panel method has been developed. The irrotational 
flow field is obtained by superimposing the flow fields of N 
sink rings, located in the inside normal of N points of the 
bubble surface, where the flow properties have to be calculated. 
For very small values of e, this numerical procedure is very 
unstable, and diverges in a short time. Nevertheless, the cal
culations were carried out for sufficient time, and enough 
numerical data has been obtained to validate the analytical 
model. 

The formation of the microjet in the regions of highest 
curvature of prolate bubbles has been observed by Blake and 
Kucera [7]. For oblate bubbles, an annular ring jet is formed 
(Blake and Kucera [7], Prosperetti [5]). The microjet appears 
typically in other situations, such as in the bubble collapse in 
the presence of boundaries, and in translating bubbles, as it 
is shown by Blake and Gibson [8] and Plesset and Prosperetti 
[9]. The microjet velocity may be expressed as 

V = K(Ap/p)W2, (1) 

where p is the liquid density, and the factor AT is a nondimen
sional value of the microjet velocity. It is shown in this paper 
that the microjet velocity is approximately twice the tip ve
locity, and the factor K is proportional to the initial slenderness 
ratio of the bubble, 1/e, so that very elongated bubbles will 
produce very high microjet velocities. 

A simple model is presented to describe the microjet, which 
is based on an interpretation proposed by Batchelor [10] for 
shaped charges. The predictions of this model are compared 
with the numerical results. 

2 A Quasi-Analytical Model 

The flow field is assumed to be due to a sink line of length 
L and intensity Q, whose velocity potential is given by 

, QU) 

where 

F(y,z,L(t)) = In 

F(y,z,L{t)), 

z + L + [(z + L)2 + y2]! 

z-L + Hz-Lf+f]1 

(2) 

(3) 
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Fig. 4 Nondimenslonal collapse time 

The kinematic condition is given by 

dxB/dt = ( V « . v = v (4) 

and the mechanical condition is 

d<j)/dt + 1/2(V0)2(1 +13) = Ap/p, on x = xB, (5) 

where xB is the position vector of the bubble surface, and 13 is 
a positive constant to take into account mechanical energy 
losses. If the velocity field derives from a potential, the flow 
is ideal and there should not be any losses; however, 13 is going 
to be different from zero only in a very small region near the 
tips of the bubble. The acceleration term in equation (5) is 
obtained from equation (2) in the form 

H _ J_dQ 
dt ~ 4ir dt 

F + 
QdFdL 

4TT dL dt' 
(6) 

Initially, Q, dL/dt, and all the velocities are assumed to be 
zero, but dQ/dt may be different from zero; then, from equa
tions (2), (5) and (6), it is obtained that F= const, at / = 0 on 
the bubble surface. It may be shown that this is the equation 
of an ellipsoid of revolution, whose foci are at the end of the 
sink line. Initially, the semiaxes are RQ and L0 + E0, and from 
equation (3) the following relation is obtained: 

E0 = L0[[l + (R0/L0)
2]i/2-l}. (7) 

The parameter e, defined as 

e = R(/L0, (8) 

is a small quantity. Then, equation (7) reduces to: 

E0 = eR0/2 = e2L0/2. (7') 

Within this approximation, the curvature of the tip is l/E0, 
For / > 0 , it is not possible to satisfy the kinematic and 

mechanical conditions over all the surface of the bubble with 
the simple sink line model. The approximation is made of 
satisfying equations (4) and (5) only at the middle line (A in 
Fig. 3) and at the tips of the bubble (B in Fig. 3). 

The following nondimensional variables are chosen: 

r = R/R0, 1 = L/L0, e = E/E0, (9) 

q = Q/[27r/?o(Ap/p)1/2], (10) 

r = t{Ap/p)'/2/R0. (11) 

The kinematic condition at the middle line is 

and at the tips 

dr/dr = -q/r, 

dl/dr = -q/e. 

(12) 

(13) 

>»e dq 
l l 2 

2i* 
+ e» ~ Te (14) 

and at the tips 

' 4 / \ dq 
1/21 n 

dr r 
2 

I-187 
lie 

!•— = 1 
2e dr 

(15) 

where (3M and PT are the values of (3 at the middle and at the 
tip, respectively. In equations (12) to (15) terms of order e2 

have been neglected. 
The system of equations (12) to (15) has to be solved for 

the unknowns r, /, e, and q with the initial conditions: 

r = /= e= 1 at /= 0, (16) 

q= Oat /= 0. (17) 

Equations (12), (13), and (14) give explicitly the time derivatives 
of r, I, and q, respectively; and the time derivative of e is also 
obtained explicitly by eliminating dq/dr between equations (14) 
and (15), obtaining the equation 

(? W dr ~ ~ 2 [ \ eV + lie ) 

5> ('•'"-£ 

1 2' 
In — 

re 

r2 

- l/21n —, 
le 

(18) 

which may be used instead of equation (15). 
When solving numerically the previous system, if the dis

sipation coefficients (3Mand /3rare zero, it turns out that, after 
a very short time, the distance e becomes zero, while r and / 
remain equal to their initial values of one. Crespo et al. [11] 
interpreted this phenomenon as a local collapse, and suggested 
that there were many consecutive local collapses whose energy 
dissipation would be taken into account by making f3T = 1. 
If in equation (18) we take the limit of e going to zero, the 
only remaining term will be the first one on the right hand 
side, and (3T should be equal to one. In the last sections of this 
paper it will be shown that the fact that @T = 1 is due to the 
existence of a microjet at the tip. 

The collapse is studied by assuming that j3 r = 1, and, since 
there are not any important mechanisms producing dissipation 
of energy at the middle of the bubble, it is assumed that 0M 

= 0. With these assumptions the system of equations (12), 
(13), (14), and (18), with the initial conditions (16) and (17), 
can be solved numerically. In Fig. 4 the nondimensional col
lapse time is given as a function of e, and in Fig. 5 is given in 
dimensional variables the evolution with time of the length 
and diameter of a bubble. In both figures are also given the 
experimental results of Avellan and Karami [3]. The agreement 
of the numerical results and the experiments is good for the 
diameter and reasonable for the length. 

A quasi-analytical solution is obtained if it can be assumed 
that the parameter 

7 = [ln(2/6)]~1/2 (19) 

is much smaller than one. For moderatelly small values of e 
this is not true. Nevertheless, as it can be seen in Figs. 4 and 
5, this analytical solution gives results which are very similar 
to those obtained by solving numerically the system of equa
tions (12) to (18) for values of e of the order 0.1. The variables 
q and r are redefined as 

q = Q/y, (20) 

T = ry. (21) 

In the limit of small y (and small e), only the first and the last 
terms remain in equation (14), and its solution, with the initial 
condition, equation (17), is 

The mechanical condition at the middle line is q = T. (22) 
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Fig. 5 Comparison with experiments 

method consists in solving Laplace's equation, with the ki
nematic condition, equation (4), and the mechanical condition, 
equation (5) (with |3 = 0). Equation (5), written in terms of the 
total derivative of <t> at the fluid surface, becomes 

l/2(V4>)2 + Ap/p, on x = xfl. d<f>/dt (27) 

To solve Laplace's equation N points are chosen along a 
meridian of the fluid surface; the values of 4> are assumed to 
be known at these points. N sink rings are located inside the 
fluid surface in the normal to it through each one of the N 
points. The intensities of the N sink rings needed to give the 
values of 4> are then calculated. 

An implicit scheme of integration in time has been chosen. 
The values of the position and potential for each one of the 
N points are obtained from 

\(t + At) = x(/) + [V(/ + A/)+ \{t)]At/2, (28) 

4>(t + At) = 4>(0 + ),+ (£),., At/2. (29) 

0 , 0 
0 . 0 0 . 2 0 . 4 0 . B 0 . 8 1 . 0 

Fig. 6 Comparison of quasi-analytical and numerical results for the 
nondimenslonal bubble length and radius 

By substituting this value of q into equation (12) with the new 
variables, and using the initial condition, equation (16), it is 
obtained that 

f2)172. (23) r = (1 

Equations (13) and (18) become in this limit 

q cte 
2e dt 

dl/df = 

- £ ( 1 H) 
q/e 

le/ 
+ l/21n 

le 

(24) 

(25) 

The corresponding values of / and r as functions of T are given 
in Fig. 6. It should be emphasized that there are no parameters 
in equations (22) to (25) and in the corresponding initial con
ditions, so that the curves of Fig. 6 are universal. In this figure 
it can be observed that the bubble approximately retains its 
initial shape until almost the end of the process; then the 
slenderness of the bubble increases, because its radius goes to 
zero while its length goes to 32% of its initial value. In practice 
this limit may not be achieved because of surface instabilities. 

The collapse time, expressed by the variable r, is one; and 
expressed by the variable r is 1/7, which is represented in Fig. 
4. The dimensional collapse time is 

[\n(2/e)f2 

tr 
(Ap/Py 

(26) 

3 Numerical Model 
A numerical solution of the previous problem, applied to 

the whole surface of the bubble, has also been obtained. The 

where the time derivative of <j> is given by equation (27). In a 
first iteration the values of the velocity components at the new 
time are supposed to be equal to those at time /. Then, with 
the values of <f> at the new time obtained from equation (29), 
the sink intensities are calculated; from the intensities of the 
N sink rings the values of the velocity components at each 
point are obtained and compared with those of the previous 
iteration. The process is repeated until convergence is reached. 

This numerical procedure has been tested by applying it to 
the well-known problem of the collapse of a spherical bubble; 
for N=40, the resulting error is less than 0.2 percent. 

4 Results of the Numerical Model 
The numerical model is extremely unstable for very small 

values of e. The smallest value of e for which significative 
results were obtained was 0.25, and calculations for only half 
of the collapse time could be made. For larger values of e, 
longer times can be reached. 

In Fig. 7 the evolution of the profile of half a meridian of 
the bubble is given. In this figure the presence of the microjet 
at the tip is clearly shown. In Fig. 6 the evolution with time 
of the maximum length and radius of the bubble are given and 
compared with the values from the analytical solution; the 
agreement is good, even for values of t as large as 0.5, for 
which the analytical theory previously presented is not valid. 

The characteristics of the microjet will be examined in the 
next section, where a simplified model is proposed to interpret 
the flow at the tip. 

5 Simple Model for the Microjet 
Batchelor [10] proposes a simple model for shaped charges, 

which can be adapted to this problem in the form shown 
schematically in Fig. 8. A region near the tip, at distances from 
it of the order of eL, is considered. The flow is supposed to 
be steady in a reference frame moving along the z axis with 
the tip velocity, dL/dt. This assumption is justified by the fact 
that the second term in the right-hand side of equation (6), 
which corresponds to this translation effect, is larger than the 
first one. It may be shown that their ratio is of the order of 
e2. It is also assumed that the bubble surface (excluding the 
microjet and the tip) moves inwards with an absolute velocity 
V,„ which is decomposed as indicated in Fig. 8. The component 
K„coseco: is the tip velocity, dL/dt, and has to be constant. 
The other component, I^cota, is the flow velocity in the mov-
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ing frame, and has also to be constant because of Bernouilli's 
equation. If the bubble is slender and a is small, these two 
conditions can hold simultaneously, because cota and coseca 
are equal within an order of a2. In the region located at a 
distance from the tip of the order of the minimum curvature 
radius, e2L, a has to be of order unity, and the absolute velocity 
is not normal to the bubble surface; obviously this also happens 
in the microjet. 

The relative velocity along the interface will be equal to the 
axial tip velocity dL/dt, and the absolute microjet velocity will 
be 2dL/dt. The dissipative term of equation (5) may then be 
interpreted as the kinetic energy of the radial velocity at the 

0 .0 
.0 0 . 5 1.0 y 

Fig. 7(c) 

Fig. 7 Evolution of the bubble, (a) i = 1/2; (b) i = 1/3; (c)« = 1/4 

Fig. 8 Schematic showing the simple model for the microjet 

tip, which, according to the previous reasoning, is equal to the 
axial velocity at the tip. 

To check this model, the values of the nondimensional mi
crojet velocity divided by two and of the radial velocity at the 
tip, obtained from the numerical model, are respectively com
pared in Figs. 9 and 10 with the analytical value of dl/df. The 
agreement is reasonable even for values of e as large as 0.5. 

6 Conclusions 
The results of the quasi analytical theory presented to de

scribe the overall cavitation process of elongated bubbles are 
in good agreement with experimental results. The collapse time 
is given by equation (26). The axial velocity of collapse is of 
an order of magnitude 

e[ln(2/e)]' 
(Ap/p)1 (30) 
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Fig. 10 Comparison of the radial and axial tip velocities 

so that it is a decreasing function of e, and the collapse will 
be intense if the bubble is very elongated. 

The quasi-analytical model has been validated by compar
ison with a numerical model. The results of this numerical 
model show the existence of a microjet at the tip, which is 
taken into account in the analytical theory by means of a 
dissipation factor. 

The nature of the microjet at the tip of the bubble has been 
examined, and a method to deal with it has been proposed. 
Simple relations are given to describe the flow magnitudes of 
the microjet. • 

It is of interest to improve the numerical methods of inte
gration in the future so that they can be applied to more slender 
bubbles and times closer to the collapse could be reached. 
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Introduction 
Flow separation control is a rich technology of long standing 

within the discipline of fluid mechanics. Momentum and en
ergy losses due to flow separation are detrimental to airfoil 
and diffuser performance and result in increased body drag. 
For excessive separation, stalling may occur which can lead to 
catastrophic results. Controlling flow separation can result in 
an increase in system performance with consequent energy 
conservation, as well as weight and space savings. 

One flow separation control technique of current interest is 
to impose a wall slip layer through the use of transverse grooves. 
The concept of using transverse surface grooves for delaying 
separation in diffusers evidently originated in the Soviet Union 
[1,2]. Research discussed in references [3, 4, and 5] also in
dicates that grooves aligned transverse to the direction of the 
flow are effective in controlling separation. Up to a 50 percent 
bluff-body drag reduction was reported in references [5 and 
6] via small transverse shoulder grooves. References [1 and 2] 
suggest that the grooves function similar to a "roller bearing." 
In other words, the mechanism of the transverse groove sep
aration control appears to be one of simply substituting several 
small regions of separation (which effectively provide a wall 
slip boundary condition) for a larger separated-flow region 
[6,7]. This approach has been studied thus far mainly in low 
Reynolds number flows and should be extended toward the 
more relevant, higher Reynolds number region. In the inves
tigations cited, the Reynolds number based upon the distance 
between stagnation point and transverse grooves, Rex, was less 
than 8 x 105, while Re^ for the present study was approximately 
5.1 X106. Improving the "roller bearing" effect by making the 
flow more three-dimensional through swept grooves should 
also be a subject for investigation. 

An objective of the current research is to experimentally 
investigate the performance of transverse and swept grooves 
for controlling a two-dimensional, turbulent, separated flow 
at low speeds and moderate Reynolds numbers. 

'Associate Professor, Mechanical Engineering and Mechanics Department, 
Old Dominion University, Norfolk, VA 23529-0247. Mem. ASME. 

2Aerospace Engineer, Viscous Flow Branch, Fluid Mechanics Division, NASA 
Langley Research Center, Hampton, VA. 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY 
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Apparatus and Tests 
Separation control experiments were conducted in the NASA 

Langley 51x71 cm (20x28 in.) Shear-Flow Control Tunnel. 
This is a low-turbulence, subsonic, open-circuit wind tunnel. 
The speed range in the test section is from 2 to 46 m/s. In the 
current study, all experiments were conducted at a free-stream 
velocity of 40.2 m/s. (The uncertainty in free-stream velocity 
was ±0.4 percent.) The flow separation ramp (model) was 
located approximately 1.93 m from the test section entrance. 
See Fig. 1 for the test configuration. A suction slot at the test 
section entrance was used to remove the converging section 
boundary layer to eliminate any influence of upstream history 
on the test boundary layer. The new laminar boundary layer 
that developed downstream of the suction device was artifi
cially tripped with a 5-cm-wide strip of sandpaper (36 grit). 
The ceiling height of the test section was adjusted to obtain 
zero pressure gradient upstream of the ramp. The boundary 
layer on the centerline just ahead of the separation ramp was 
fully turbulent and approximately 3.25 cm in thickness. (The 
uncertainty in boundary-layer thickness was ±1.7 percent.) 
At this same location, the momentum thickness (0) was 0.34 
cm and its spanwise variation across the test plate was within 
±2.5 percent. Values of 6 were obtained from integration of 
streamwise velocity profiles from surveys conducted at inter
vals of 1.27 cm in the spanwise direction. The momentum 
thickness Reynolds number, Re, was approximately 9000. 

The baseline (or reference) separation model was a two-
dimensional 25 deg ramp with a 20.3 cm shoulder radius as 
shown in Fig. 1. The width of the model was 71 cm, which 
covered the entire test section in the spanwise direction. This 
model produced reasonably two-dimensional flow separation 
at approximately the midpoint of the ramp or about 25 down
stream of the horizontal (or first) tangent point. The transverse 
and swept grooves were located on the shoulder of the ramp 
model itself. The geometry of transverse and swept grooves 
tested in the present study is summarized in Fig. 2. 

Static pressure orifices were located on the centerline of both 

Pitot-static probe 

Sandpaper trip 

Adjustable upper wall 
(set for zero pressure gradient) 

Rear floor 

To suction 

Model ramp 
geometry * 

1 i 5 " 

* (sid 

^3.500 , L* 

Tangent -J 

e view) 

*-3.381 ,L* 

Pl̂  
^ T a 

L R = 8.00" 
* 5,! * 

Fig. 1 Test configuration in tunnel 
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Note: All dimensions are in mm

Fig. 2 Geometry of transverse and swept grooves
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Fig. 3 Pressure distributions for transverse and swept grooves. (Un·
certainty in Cp Is ± 0.005), (a) Transverse grooves at various alb ratlos;
(b) Swept grooves at various sweep angles.

the reference separation ramp and the floor downstream of
the ramp. The pressure tubes for the orifices were connected
to a motor driven valve which sequentially connected each
orifice to a single differential pressure gauge. All surface static
pressure measurements were referenced to the freestream static
pressure measurement located near the entrance of the test
section. These pressure differences were nondimensionalized
by the freestream dynamic pressure to obtain pressure coef
ficients (Cp ). Because of physical constraints, pressure orifices
could not be installed on the grooved ramp. However, pressure
measurements were made on the floor downstream of the sep
aration ramp to study reattachment and pressure recovery.

Results and Discussion

In the preliminary investigation of transverse grooves, the
optimum transverse groove location was determined by sys
tematically varying the beginning and end of the grooved sec
tion. Oil flow visualization of the flow downstream of the
ramp with transverse grooves indicated that the optimum lo
cation for the beginning of the grooves was about one bound
ary-layer thickness (0) upstream of the base model separation
line (or baseline separation) with the grooved region extending
to one 0 downstream of the separation line. This optimum
transverse groove configuration reduced the distance from the
reference separation line to reattachment by almost 20 percent.
This result was also verified by the pressure distribution meas
urements on the floor behind the separation ramp as shown
in Fig. 3(a). When examining the baseline pressure distribution,
it should be pointed out that the flow around a corner (or a

Fig. 4 011 flow visualization of ramp models. (a) Reference model; (b)
Model with transverse grooves.

shoulder) accelerates and decelerates symmetrically from the
potential flow perspective, which is the reason for the pressure
drop along the upstream portion of the shoulder. Baseline
separation occurred just before the sharply increasing Cp dis
tribution began to level off and reattachment occurred near
the region of maximum Cpo The reattachment distance, there
fore, was defined as the distance between the reference sep
aration line and the streamwise location where maximum Cp

occurred. Then, a reduction in the extent of the separation
flow region typically corresponded to the upstream movement
of the location at which maximum Cp occurred (see Fig. 3(a».
Figure 3(a) also shows that the optimum transverse groove
location is in the maximum adverse pressure gradient region.
Of the configurations tested, the most effective groove con
figuration had a groove depth-to-width ratio (a/b) of 2.67.
Doubling the groove width with constant groove depth moved
reattachment back to the baseline case while the pressure re
covery dropped below that of the baseline level (see Fig. 3(a».
One possible explanation for this adverse effect is that as a/
b is reduced to 1.14, the critical aspect ratio for transition from
an open to a closed cavity is approached. Associated with a
closed cavity (a/b< 1) is an additional separated-flow region
downstream of the cavity and increased drag. Although the
optimum transverse groove location remained about the same
after reducing both the groove depth and groove width by 50
percent, the effectiveness of the smaller transverse groove con
figuration in reducing the reattachment distance was also cut
in half (down from approximately 20 to 10 percent). Varying
the land (or rib) thickness from 1.6 mm to 0.8 mm did not
change the effectiveness of the transverse grooves.

Flow visualization using surface tufts indicated high am
plitude velocity fluctuations near the surface with transverse
grooves. This result is in agreement with the findings of Stull
[4], who reported pulsating free-shear layers and the formation
of rollers over the grooved section which gave rise to large
velocity fluctuations in the near-wall region. The present ex
periment also indicated that the transverse grooves generate
three-dimensional flow, as shown in Fig. 4. The three-dimen
sional effects appeared when the transverse-grooved section
extended downstream of the base model separation line. This
three-dimensional flow suggests that properly designed swept
grooves might enhance the performance of grooves for sep
aration control.

The initial swept grooves investigated consisted of alternat
ing + 45 and - 45 deg sweep angle (with respect to the flow
direction) shoulder grooves with various widths (see Fig. 2).
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Fig. 5 011 flow visualization of models with longitudinal and swept
grooves. (s) 0 deg swept (longitudinal) grooves; (b) 45 deg (constant)
swept grooves.
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A Near-Wall Eddy Viscosity Formula for Turbulent
Boundary Layers in Pressure Gradients Suitable for Mo
mentum, Heat, or Mass Transfer

The swept grooves covered approximately the same streamwise
adverse pressure gradient region as the optimized transverse
grooves. Notice that the depth (a) for swept and longitudinal
grooves is not constant. It varies from zero at the leading edge
of a groove to a maximum of 0.64 em near the midpoint of
a groove. The results indicated that all alternating 45 deg swept
grooves, regardless of spanwise width, increased the reattach
ment distance and reduced the pressure recovery when com
pared to the baseline case. Figure 3(b) shows the downstream
floor pressure distribution comparison between the 45 deg
constant (nonaIternating) swept grooves, the 0 deg swept
grooves (or small longitudinal grooves), and the 90 deg swept
grooves (or small transverse grooves) of equivalent groove size.
The results indicate that both 0 deg and 90 deg swept grooves
showed a slight improvement over the baseline case as indicated
by increased pressure recovery and reduced reattachment dis
tance, while the 45 deg constant swept grooves performed very
similar to the 45 deg alternating swept grooves, increasing the
reattachment distance and reducing the pressure recovery. The
adverse effects produced by the 45 deg swept grooves could
be the same as that of the transverse grooves with alb = 1.14,
since the majority of grooves in the longitudinal plane have
alb less than one corresponding to a closed cavity. Figure 5
shows the oil flow visualization of longitudinal and swept
grooves. It appears that the longitudinal grooves produce
straighter surface streamlines downstream of the ramp than
either the 45 deg swept grooves or the transverse grooves.
Unlike the "roller bearing" mechanism associated with the
transverse grooves, the separation control mechanism for the
longitudinal grooves may be the local mitigation of the imposed
adverse pressure gradient through the technique of partial
"boattailing. "

In summary, the present experimental investigation for con
trolling turbulent flow separation over a backward-facing ramp
indicates that transverse grooves, located in the maximum
+dPldx region with a height-to-width ratio greater than 2.5,
reduced the reattachment distance by 20 percent over the base
line configuration. Unlike the transverse and longitudinal
grooves of equivalent size, the 45 deg swept-groove configu
rations tested in the present study enhanced separation.
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An eddy viscosity formula is proposed for turbulent boundary
layers in pressure gradients which is compatible with the slope
and intercept of the log law. By having a '»3" variation at
the wall the formula is suitable for momentum, heat and mass
transfer.

Introduction

Algebraic formulas for eddy viscosity or mixing length are
the simplest and best known forms of turbulence modeling
applied to predicting the development of turbulent boundary
layers. They also have more-or-Iess stood the test of accuracy
when compared to more complicated turbulence models [I,
2).

The problem to be addressed is an accurate formula for the
eddy viscosity or mixing length in the region next to the wall
for a turbulent boundary layer in a longitudinal pressure gra
dient on a smooth surface; said region encompassing the vis
cous sublayer, the buffer layer and the log layer,

The usual formula for the eddy viscosity or mixing length
of the log layer is given by a Prandtl relation and of the viscous
sublayer and buffer layer by a van Driest type damping func
tion. A van Driest type damping function has an exponential
form which asymptotically merges into the Prandtl relation
for the log layer.

The van Driest damping function was originally proposed
for mixing lengths in zero pressure gradients [3). Various com
peting modifications had been proposed for pressure gradients
and a final form [4) was proposed which correctly predicts the
experimentally determined slope and intercept of the velocity
log law [5, 6).

However there is another consideration which has been a
subject of controversy for many years: namely, whether the
eddy viscosity should vary as the third power or fourth power
of the normal distance from the wall, "y3" or "y4". From the
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Fig. 5 011 flow visualization of models with longitudinal and swept
grooves. (s) 0 deg swept (longitudinal) grooves; (b) 45 deg (constant)
swept grooves.
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A Near-Wall Eddy Viscosity Formula for Turbulent
Boundary Layers in Pressure Gradients Suitable for Mo
mentum, Heat, or Mass Transfer

The swept grooves covered approximately the same streamwise
adverse pressure gradient region as the optimized transverse
grooves. Notice that the depth (a) for swept and longitudinal
grooves is not constant. It varies from zero at the leading edge
of a groove to a maximum of 0.64 em near the midpoint of
a groove. The results indicated that all alternating 45 deg swept
grooves, regardless of spanwise width, increased the reattach
ment distance and reduced the pressure recovery when com
pared to the baseline case. Figure 3(b) shows the downstream
floor pressure distribution comparison between the 45 deg
constant (nonaIternating) swept grooves, the 0 deg swept
grooves (or small longitudinal grooves), and the 90 deg swept
grooves (or small transverse grooves) of equivalent groove size.
The results indicate that both 0 deg and 90 deg swept grooves
showed a slight improvement over the baseline case as indicated
by increased pressure recovery and reduced reattachment dis
tance, while the 45 deg constant swept grooves performed very
similar to the 45 deg alternating swept grooves, increasing the
reattachment distance and reducing the pressure recovery. The
adverse effects produced by the 45 deg swept grooves could
be the same as that of the transverse grooves with alb = 1.14,
since the majority of grooves in the longitudinal plane have
alb less than one corresponding to a closed cavity. Figure 5
shows the oil flow visualization of longitudinal and swept
grooves. It appears that the longitudinal grooves produce
straighter surface streamlines downstream of the ramp than
either the 45 deg swept grooves or the transverse grooves.
Unlike the "roller bearing" mechanism associated with the
transverse grooves, the separation control mechanism for the
longitudinal grooves may be the local mitigation of the imposed
adverse pressure gradient through the technique of partial
"boattailing. "

In summary, the present experimental investigation for con
trolling turbulent flow separation over a backward-facing ramp
indicates that transverse grooves, located in the maximum
+dPldx region with a height-to-width ratio greater than 2.5,
reduced the reattachment distance by 20 percent over the base
line configuration. Unlike the transverse and longitudinal
grooves of equivalent size, the 45 deg swept-groove configu
rations tested in the present study enhanced separation.
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An eddy viscosity formula is proposed for turbulent boundary
layers in pressure gradients which is compatible with the slope
and intercept of the log law. By having a '»3" variation at
the wall the formula is suitable for momentum, heat and mass
transfer.

Introduction

Algebraic formulas for eddy viscosity or mixing length are
the simplest and best known forms of turbulence modeling
applied to predicting the development of turbulent boundary
layers. They also have more-or-Iess stood the test of accuracy
when compared to more complicated turbulence models [I,
2).

The problem to be addressed is an accurate formula for the
eddy viscosity or mixing length in the region next to the wall
for a turbulent boundary layer in a longitudinal pressure gra
dient on a smooth surface; said region encompassing the vis
cous sublayer, the buffer layer and the log layer,

The usual formula for the eddy viscosity or mixing length
of the log layer is given by a Prandtl relation and of the viscous
sublayer and buffer layer by a van Driest type damping func
tion. A van Driest type damping function has an exponential
form which asymptotically merges into the Prandtl relation
for the log layer.

The van Driest damping function was originally proposed
for mixing lengths in zero pressure gradients [3). Various com
peting modifications had been proposed for pressure gradients
and a final form [4) was proposed which correctly predicts the
experimentally determined slope and intercept of the velocity
log law [5, 6).

However there is another consideration which has been a
subject of controversy for many years: namely, whether the
eddy viscosity should vary as the third power or fourth power
of the normal distance from the wall, "y3" or "y4". From the
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viewpoint of overall momentum transfer in the boundary layer, 
this may be of little consequence owing to the thinness of the 
wall layer. For problems in heat or mass transfer at the wall 
involving turbulent Prandtl or Schmidt Numbers, this consid
eration, however, may be important. 

In a comprehensive investigation and intensive analysis, 
Chapman and Kuhn [7] conclude that the "_)>3" variation is 
more accurate than the "y 4 " variation. Note the van Driest 
formula for mixing length gives a " /*" variation even when 
modified for pressure gradient [4]. 

Chapman and Kuhn [7], accordingly, modified the van Driest 
formula for mixing length to provide a " j 3 " variation for, 
however, only zero pressure gradient. 

Johnson and King [8], on the other hand, have given a ' V 
variation to a formula for eddy viscosity with a modified van 
Driest type damping function which does apply to pressure 
gradients. However it is shown that this formula does not lead 
to the correct slope and intercept of the velocity log law. 

Another consideration is the value of the ^-coefficient at 
the wall. Chapman and Kuhn [7] show that their eddy viscosity 
formula gives a coefficient at great variance with a more ac
curate coefficient obtained from a Navier-Stokes analysis. It 
is shown here that the Johnson and King mixing length formula 
gives a coefficient also at great variance with the Navier-Stokes 
model. 

Accordingly an eddy viscosity formula is now proposed which 
satisfies the following conditions: 

1. the ^'-variation at the wall 
2. the slope of the log law for pressure gradients 
3. the intercept of the log law for pressure gradients 
4. the proper /'-coefficient at the wall 
5. the dependence on molecular viscosity [9] 
In addition it is shown the near-wall eddy viscosity may be 

analytically blended with an outer eddy viscosity such as that 
of Cebeci and Smith [10] to provide a continuous variation of 
eddy viscosity across the whole boundary layer. This eliminates 
an awkward intersection of the two eddy viscosities. 

The proposed eddy viscosity formula is also applicable to 
the Baldwin-Lomax method [11] for solving the time-averaged 
Navier-Stokes (Reynolds) equations for turbulent flows. 

General 

Log Law. As shown experimentally by McDonald [5] and 
more recently by Salam [6], the inner logarithmic law (law of 
the wall) for the mean streamwise velocity (u) near a wall 
remains invariant in usual longitudinal pressure gradients, even 
close to separation such that 

u* =-In y*+Bt 
K 

(1) 

The total shear stress (r) has also a laminar contribution (i> 
du/dy) near the wall so that 

du* 

dy* 
+ I* £)'-H du* 

dy* 
(4) 

where r* = T/TW. 
Consequently the slope of the velocity profile is given non-

dimensionally by 
du* 2r> T* 

dy- ~ l + V l + ( 2 / * ) V ~ ! + ("/") 

and the mixing length is related to the eddy viscosity by 

l + ( 2 / * ) V - l 

and 

(6) 

(7) 

Also from the two-dimensional equation of motion the non-
dimensional shear stress (r*) for pressure gradients may be 
expressed [4] as 

r* = \+p+y* (8) 

where p+ = v/puT
3 dp/dx, a pressure-gradient parameter, p 

= pressure, x = streamwise coordinate, and p+ = ap+. Here 
a is an appropriate constant, somewhat less than one. 

Slope of Log Law. The slope of the velocity profile is given 
by equation (5) which may be rewritten as 

du* 2K r*y* KT* y* 

d(\ny*) l+^Jl+(2I*)2
T* l+("r/v) 

(9) 

For the log law, K du*/d (In y*) = 1, and for laminar flow, 
K du*/d (In y*) = KT* y*. 

intercept of Log Law. The mixing length formula and the 
eddy viscosity formula should also lead to the value of an 
intercept, Bu which agrees with the log law. Equating the log 
law, equation (1), and the velocity profile obtained by inte
grating equation (5) results in 

- £ 2T* 

J in y* 

0 

l+Vl+(2/*)2 

2T* y* 

dy* + 

\+SJ\+(21*)1T* 
d(\n y*) (10) 

where u* = u/uT, y* = uTy/v, K = von Karman constant, 1/ 
x = slope of log law, Bx = intercept (constant for smooth 

surfaces), uT = shear velocity = \J T„/p, T„ = wall shear stress, 
p = density of fluid, v = kinematic viscosity of fluid and y 
= normal distance from wall. 

Mixing Length and Eddy Viscosity. The turbulent shear 
stress (r,) may be given by a Prandtl mixing length (!) or a 
Boussinesq kinematic eddy viscosity (vT) v, as 

T, 

or nondimensionally as 

= / 

where /* = url/v. 

Tj_ 

\dy* 

2 (du 
= v, -

\dy. 

VJ. (du* 
v \dy* 

(2) 

(3) 

Bt = 

\ny 

0 l+(v,/v) 
dy* + 

T* y* 

I + (v,/v) 
d(\ny*) (11) 

where y* is a sufficiently large value of y* in the log layer. 
The integrand of the second term becomes practically zero at 
the value of y*. 

Mixing Length and Eddy Viscosity for Log Layer. The log 
layer is sufficiently far from the wall so that the laminar shear 
stress is negligible compared to the turbulent shear stress so 
thatr* = T,/T„,. From equation (3) and differentiating equation 

(1) results in a mixing length /* = 
viscosity v,/v = T*Ky*. 

\]T* Ky* and an eddy 
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existing formulas 

Existing "y 3 " Formulas 
Chapman and Kuhn Mixing Length Formula. After an 

intensive investigation which concluded that the eddy viscosity 
should vary as the cube of the normal distance, >>3, Chapman 
and Kuhn [7] propose a modified van Driest mixing length 
formula for zero pressure gradient as 

/• = Ky*[ l -exp(->-*/V)] l / 2 (12) 
where X0* is the appropriate factor for zero pressure gradient. 
A value of Xo* = 66 corresponds to usual value of X0* = 26 
for the original van Driest formula if K = 0.4. Here Bt = 
5.23. 

Now, if the slope of the velocity profile as given by K du*7 
d (In y*) in equation (9), is plotted in Fig. 1 for zero pressure 
gradient, the slope merges into the log law at higher values of 
y*. If applied to an adverse pressure gradient, however, such 
as p+ = 0.05, it is seen there is no merger with the log law. 

Johnson and King. An eddy viscosity formula for the near-
wall region is proposed by Johnson and King [8] which has 
the ^-variation and which may be rewritten as 

<y ^ [l-exp(->-*/X0*)]2 (13) 

Here T*max is the maximum value of T* across the boundary 
layer. It should be noted that a maximum value in T* only 
occurs in adverse pressure gradients where dr*/dy* > 0 at the 
wall. A value of XV = 17.4 corresponds to the usual value of 
Xo* = 26 for the original van Driest formula. 

Now, if the slope of the velocity profile as given by K du*/ 
d (In y*) in equation (9) is plotted in Fig. 1 for zero pressure 
gradient (r*max = 1 ) , the slope merges into the log law at higher 
values of y*. For an adverse pressure gradient such as p+ = 
0.05 and say T*max = 4 or 6, it is seen there is no merger with 
the log law. 

Proposed Formula 
To ensure a more rapid convergence of the damping func

tion, y*2 is used instead of y* so that the eddy viscosity is 
proposed in the form 

- = *<y*T* ( l -exp[ - (>VX*) 2 ] ] 
v 

(14) 

Loitsyanskii [12] used y*2 instead of y* in the damping factor 
of the original van Driest formula. The combination ny*r* in 
the proposed formula is required to satisfy the slope of the 
log law. 

To satisfy the requirement of an invariant intercept of the 
log law, equation (11) is numerically solved for Bx. For a 
constant value of 5 , = 5.23 and K = 0.4, X* becomes a function 
of p+. A numerical fit to (24/X*)2 = 1 + a p+ results in a 

= 14.5 for p+ > 0 and a = 18 for p+ < 0. X0* = 24. 
Finally the proposed formula is 

\ 1 - exp[ - (y*\Jl+ap+/24)2]} (15) 

A plot of the slopes is shown in Fig. 2 for various pressure 
gradients. It is seen that the lines in all cases rapidly converge 
to that for the log law. 

Comparison of ^-Coefficients 
From Maclaurin series expansions of equations (12), (13) 

and (15), the ^'-coefficients are as follows: 
Chapman and Kuhn: 

JL. - (°-4)2 

Xo* _ 66 

Johnson and King: 

= 0.0024 

K\J 7 

(Xo)2 

Proposed: 

0.4 
(17.4)2 0.0013 for T* 

0.4 
(24)2 0.00069 

Chapman and Kuhn obtain values of 0.0007 and 0.0005 from 
a Navier-Stokes analysis. The value of 0.00069 from the pro
posed model is hence very close to these values. 

Applications 
Blending of Inner and Outer Eddy Viscosities. An awk

ward intersection of the inner (near wall) and outer eddy vis
cosities may be avoided by using a blending relation such as 

!-© t anh——-
o (V")o 

or 

" / o 
1 - exp Wv)'i 

{v,/v\ 

(16) 

(17) 

where (c,/y), is the relation for the inner region such as equation 
(15) and (v,/v)0 is the relation for the outer region which may 
be that of Cebeci and Smith [10] or its variation [13]. 

The hyperbolic tangent relation is used in a less general way 
by Lam [14] for the case of zero pressure gradient and the 
exponential relation is used by Johnson and King [8]. 

Baldwin-Lomax Method. In general the Baldwin-Lomax 
method is based on the Cebeci-Smith eddy viscosity model for 
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the outer flow such that more readily determined factors are 
substituted for the boundary-layer and displacement thick
nesses. Analytical statements [11] are given for these factors 
which apply to turbulent boundary layers in pressure gradients. 
The proposed formula for the inner region may be used without 
alteration and blended with the Baldwin-Lomax formula for 
the outer flow in a manner just presented. 
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Velocity Measurements on the Forward Portion of a 
Cylinder 

D. E. Paxson1 and R. E. Mayle' 

Velocity measurements in the laminar boundary layer around 
the forward portion of a circular cylinder are presented. These 
results are compared to Blasius' theory for laminar flow around 
a cylinder using a free-stream velocity distribution obtained 
from static pressure measurements on the cylinder. Even though 
the flow is periodically unsteady as a result of vortex shedding 
from the cylinder, it is found that the agreement is excellent. 

Nomenclature 

Cp = static pressure coefficient 
D = cylinder diameter 
n = frequency 
R = cylinder radius 

Re = Reynolds number 
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Introduction 
In 1908, Blasius (or see Schlichting, 1979) obtained a series 

solution to the laminar boundary layer equations for steady 
flow around a circular cylinder; a solution which, in general, 
may be applied to any symmetrical, two-dimensional body. 
Later, it was developed further by Howarth (1935) and Gortler 
(1949). The solution, of course, requires the free-stream ve
locity distribution which is to be provided as a power series in 
<t>, where 4> denotes the angular distance (in radians) from 
stagnation. For flow around a symmetrical cylinder this has 
the general form 

U4,Ua, = ul4> + u,<t>i + Us4>s + . • • (1) 
where £/„, is the incident cross-flow velocity. For potential flow 
around a circular cylinder, Ui = 2, ui= - 2 / 3 ! , u5 = 2/5l, etc. 
In this case, the velocity profiles appear as shown in Fig. 9.6 
in Schlichting and separation is found to occur at </>= 108.8 
deg (1.90 radians). 

Comparisons between theory and experiments have generally 
involved calculating the separation position for a measured 
pressure distribution, from which the free-stream velocity dis
tribution can be obtained, and comparing the result to the 
measured separation position. This work was initially con
ducted by Hiemenz (1911), who showed excellent agreement 
between his calculated and observed separation positions. For 
this case, however, the pressure distribution was not the same 
as that for potential flow and separation occurred at $ = 81 
deg (1.41 radians). Experiments and calculations were later 
made by Thom (1928) and Fage (1929) who, attempting to 
locate the position of separation, measured velocities profiles 
near separation (50 deg<<7J<95 deg) using a small total pres
sure tube. Their tests were conducted at virtually the same 
conditions of the present tests and although they admit that 
their data was somewhat affected by their traverse device, they 
obtained a reasonable agreement with their calculations. 

Other experimental investigations include extensive meas
urements of drag (see Schlichting) and the unsteady shedding 
of the boundary layer from the cylinder. On the latter subject, 
Roshko (1954) presents the more recent results. In general, he 
shows that the shedding frequency n, expressed in a dimen-
sionless form as a Strouhal number, S = nD/UO0, depends on 
the cylinder Reynolds number Re=UaD/v. In these expres
sions, v is the kinematic viscosity and D is the cylinder diameter. 
For 103 < Re< 105, he found that the Strouhal number is nearly 
constant and equal to 0.21. 

To the authors' knowledge, however, a complete set of ve
locity measurements in the laminar boundary layer and the 
forward portion of a cylinder have never been reported and 
compared to theory, and the effect of the unsteadiness in this 
region driven by the vortex shedding from the cylinder itself 
has never been mentioned. The results presented herein provide 
this information. 

Experimental Apparatus and Procedure 
The present tests were conducted in a low-speed, open-circuit 
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the outer flow such that more readily determined factors are 
substituted for the boundary-layer and displacement thick
nesses. Analytical statements [11] are given for these factors 
which apply to turbulent boundary layers in pressure gradients. 
The proposed formula for the inner region may be used without 
alteration and blended with the Baldwin-Lomax formula for 
the outer flow in a manner just presented. 
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their data was somewhat affected by their traverse device, they 
obtained a reasonable agreement with their calculations. 

Other experimental investigations include extensive meas
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of the boundary layer from the cylinder. On the latter subject, 
Roshko (1954) presents the more recent results. In general, he 
shows that the shedding frequency n, expressed in a dimen-
sionless form as a Strouhal number, S = nD/UO0, depends on 
the cylinder Reynolds number Re=UaD/v. In these expres
sions, v is the kinematic viscosity and D is the cylinder diameter. 
For 103 < Re< 105, he found that the Strouhal number is nearly 
constant and equal to 0.21. 
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TOP VIEW 
Fig. 1 Test cylinder and boundary layer probe arrangement 

wind tunnel. The flow entering the test section had a steady 
velocity of 11.5 m/s, was uniform to within ± 1 percent, and 
had a turbulent level of about 0.4 percent. The test section 
was a 46 cm high by 76 cm wide, 3 m long rectangular duct 
and contained the test cylinder positioned vertically in the 
center. This cylinder was a hollow metal cylinder with an out
side diameter of 15.2 cm. Although the length-to-diameter ratio 
of the test cylinder is rather small, 3-to-l, Van Dresar and 
Mayle (1986) showed that the flow around the center 40 cm 
portion of the cylinder is two-dimensional. 

Velocity measurements in the boundary layer of the test 
cylinder were made using a special miniature hot-wire probe 
as shown in Fig. 1. The sensor was a 5 micron Tungsten wire 
welded between two 6.4 mm long needles. These needles, the 
only nonsensor portion of the probe extending into the flow, 
tapered from a diameter of 0.38 mm to 0.076 mm at the sensor 
and were bent so that the probe would not interfere with the 
flow. The probe was inserted in a hole through the cylinder 
wall and attached to an external traverse device by a rod and 
bell-crank mechanism. The entire traverse mechanism except 
for the computer controlled traverse device and the probe head 
was contained within the cylinder. Even though the boundary 
layer traverses were always conducted in one direction, all of 
the linkages were very carefully designed and manufactured 
to keep backlash to a minimum and prevent the probe from 
rocking as it was moved in and out of the cylinder. Calibration 
tests showed that the relation between the probe and traverse 
device movement was linear within 2 cm from the surface of 
the cylinder. Measurements at different angular positions 
around the cylinder were obtained by rotating the entire test 
cylinder assembly. 

The hot-wire was calibrated in a separate facility. A Pitot 
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tube was used for calibrating the probe and was found adequate 
over most of the range of velocities measured. A method uti
lizing Roshko's results for vortex shedding from a cylinder 
was used to obtain the calibration at the very low velocities. 
A TSI 1052 linearizer was used to fit the calibration throughout 
the entire range. The resulting output signal from the wire 
showed a maximum deviation of 1.6 percent from the actual 
velocity. Near the wall, it was found that a "wall correction" 
had to be applied to the data. The correction according to 
Zemskaya (1979) was used. As a result, the reported dimen-
sionless velocities, u/U$', are considered accurate to within 2 
percent except for those nearest the wall where a correction 
of as much as (unKas. - uaa ) / [ / 0 = O.O6 has been applied. 

All of the tests were conducted at Reynolds number 
Re =110,000. Velocity profiles in the boundary layer were 
measured at <f> = 20, 30, 40, 50, 60, and 70 deg. Separation was 
previously found to occur at $ = 79 deg (Marziale and Mayle), 
which is only slightly different from Hiemenz' result. The 
difference is attributed to blockage. 

Results and Discussion 

Static pressure measurements were obtained from a small 
static pressure tap drilled into the test cylinder and the distri
bution of static pressure around the cylinder obtained by ro
tating the cylinder. The free-stream velocity distribution around 
the cylinder was determined from these measurements using 
Bernoulli's equation and was found to be symmetric about 
0 = 0. This distribution is well represented by the series 

f/^/[/oo=1.9250^O42703 + O.O15(/>5; ($<7r/2 radians). 

(2) 

The acceleration of the flow at stagnation, M, = 1.925 (which 
depends on wake and tunnel blockage) is only slightly less than 
for potential flow ux = 2. The coefficients in the above expres
sion (corresponding to uu uiy etc., in equation (1) were used 
in Blasius' theory to calculate the theoretical velocity profiles 
at each angular measurement position. 

The measured velocity profiles are presented in Fig. 2. 
These are plotted as ii/U^ versus the Blasius coordinate 

y\j U^R/v/R. To avoid confusion, each profile has been 
shifted upward by 0.5 units. In addition, the theoretical profiles 
obtained by using equation (2) are shown as solid lines. In 
each case the comparison is excellent except for the data point 
nearest the wall where the wall correction becomes substantial. 
The dashed line for $ = 70 deg corresponds to the theoretical 
profile using the potential free-stream velocity distribution. At 
$ = 20 deg, the theoretical profiles obtained by using the po
tential free-stream velocity distribution and equation (2) are 
virtually identical. Since M, is nearly the same for both, this is 
to be expected. 

The measurements presented in Fig. 2 are time-averaged 
velocity measurements. It was found, however, that the ve
locity everywhere in the boundary layer and in the free stream 
near the cylinder varied slight with time. The temporal vari
ation of the free-stream velocity at $ = 30 deg is presented in 

Fig. 3. The position corresponds to yyJ\iJi/v/R = 2A for 
4> = 30 deg in Fig. 2 which is at the edge of the boundary layer. 
While the magnitude of the variation elsewhere in the flow 
depended on both y and <j>, the frequency of the variation was 
independent of position and corresponded to a Strouhal num
ber of 0.21. According to Roshko, for Re= 110,000, this is 
identical to the Strouhal number for vortex shedding from the 
cylinder and indicates that the periodic behavior was driven 
by the shedding. Later, it was found that by adding a 1 m 
long, 15.2 cm thick, parallel sided afterbody to the cylinder 
both the shedding and temporal variations were completely 
eliminated. This further substantiated that the unsteadiness 
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Fig. 2 Velocity profiles on the forward portion of the cylinder 

was caused by vortex shedding and its effect on the overall 
flow field. 

According to Lighthill (1954), the time-averaged solution to 
the unsteady, laminar boundary layer equations for a small 
periodically fluctuating free stream perturbation is identical to 
the steady-state solution provided 

— « 4 0 

where n is the frequency of the fluctuation and 5 is the boundary 

layer thickness. Upon substituting b = 2AR/\] U„R/v, which 
is either found in Schlichting for the boundary layer thickness 
on a cylinder in crossflow or seen from Fig. 2, and using the 
definition of the Strouhal number this condition becomes 
S « 14. Since the Strouhal number for vortex shedding from 
a cylinder indeed satisfies this condition and the disturbance 
is indeed a small perturbation (about 0.1 U^, see Fig. 3), it 
can be expected that the time-averaged velocity profiles for 
flow around a cylinder with natural vortex shedding should 
be identical to the steady state profiles as was shown in Fig. 
2. Furthermore, as shown by Lighthill, Childs, and Mayle 

Fig. 3 Temporal variation of the free-stream velocity at 0 = 30 deg 

(1984) and experimentally by Marziale and Mayle (1984), the 
same can be said about the heat and the mass transfer from 
the cylinder. 

Conclusions 
Time-averaged boundary layer velocity measurements were 

obtained on the forward portion of a cylinder and were found 
to be in excellent agreement with Blasius' theory for steady, 
laminar, boundary-layer flow on a cylinder. 

A small unsteady component of velocity within the boundary 
layer was found to be driven at the Strouhal frequency by the 
unsteady vortex shedding from the cylinder. However, since 
both its magnitude and frequency were found to be small, its 
effect on the time-averaged velocity in the boundary layer 
according to Lighthill's theory, and as experimentally found, 
should be negligible. 
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